
Secfault SecuritySecfault Security

SSO Client Application Pentest

Security Assessment

Report

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 AgileBits

- hereafter called "Agilebits" -

This document contains proprietary and confidential information of Secfault Security and the recipient. Publication or distribution
without prior written permission is forbidden.

Secfault Security

Chapter

Document History

Version Author Date Comment
0.1 Jennifer Gehrke 2022-10-01 First Draft

0.2 Gregor Kopf 2022-10-12 Internal Review

0.3 Jennifer Gehrke 2022-12-01 Retest Status

0.4 Gregor Kopf 2022-12-05 Added Customer Feedback

0.5 Gregor Kopf 2023-03-01 Additional Customer Feedback after the Retest

1.0 Gregor Kopf 2023-03-03 Final Version

1.1 Gregor Kopf 2023-03-16 Additional Grammar and Layout Corrections

Secfault Security Confidential Page 2 of 30

Chapter

Table of Contents
1 Executive Summary..4
2 Overview..5

2.1 Target Scope..5
2.2 Test Procedures...5
2.3 Project Execution..6

3 Result Overview...7
4 Results..8

4.1 MITM Attack against Encrypted Credentials...8
4.2 MITM Attack during Device Enrollment...10
4.3 Lax Authorization Concept for Delegating Sessions..12
4.4 Automatic Restoring of Devices...15
4.5 Prolonging Sessions by Nested Delegation..18
4.6 MacOS Desktop App not using Secure GUI Restore...22
4.7 SSO Login Bypass by Session Extension...24

5 Additional Observations...26
5.1 Android Password Field Allows Pasting HTML..26
5.2 Cursory Review of new SSO Design..26

6 Customer Feedback..28
6.1.1 MITM Attack against Encrypted Credentials (Finding 4.1)...28
6.1.2 MITM Attack during Device Enrollment (Finding 4.2)...28
6.1.3 Lax Authorization Concept for Delegating Sessions (Finding 4.3)................................28
6.1.4 Automatic Restoring of Devices (Finding 4.4)...28
6.1.5 Prolonging Sessions by Nested Delegation (Finding 4.5)..28
6.1.6 MacOS Desktop App not using Secure GUI Restore (Finding 4.6)...............................28
6.1.7 SSO Login Bypass by Session Extension (Finding 4.7)...28

7 Vulnerability Rating...29
7.1 Vulnerability Types...29
7.2 Severity...29

8 Glossary..30

Secfault Security Confidential Page 3 of 30

Chapter 1

1 Executive Summary
Secfault Security was tasked by Agilebits with a security review of selected components of the
1Password ecosystem, namely the beta SSO integration along with its accompanying changes to the
codebase.

The review has been performed in the time frame from 2022-09-19 to 2022-10-14. This document
describes the results of the project.

During the review a number of issues, which are described in detail in section 4 of this document,
have been identified. The most severe issues included a design problem that enabled the b5 server
to partially compromise users' vault data. Furthermore, issues have been identified in the session
handling functionality, which could be used to bypass the requirement of having to authenticate
with an SSO provider in regular intervals. During a retest performed in November 2022, these
issues have been found to be fixed.

Overall, the reviewed codebase left a positive impression. The code is well-structured and readable
and has been implemented with security in mind.

After having received a draft version of this document, Agilebits provided feedback on the
identified issues, which can be found in section 6 of this document.

In November 2022 a retest of the majority of previously identified security issues was
commissioned by Agilebits. In total, the status of five issues was inspected. All issues have been
found to be addressed. The issues related to bypassing the SSO session duration requirements have
been discussed with Agilebits, who provided a more in-depth description of the desired semantics of
the session duration mechanism. Additional details are provided in sections 4.7 and 4.5 of this
document.

Secfault Security Confidential Page 4 of 30

Chapter 2

2 Overview
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store various passwords, software licenses, and other
sensitive information in virtual vaults.

Agilebits tasked Secfault Security with a review of the SSO integration, which Agilebits recently
added to the solution. In section 2.1 of this document, a description of the project's scope is
provided. Section 2.2 provides details on the test procedures.

2.1 Target Scope
Secfault Security performed a combination of dynamic and static security testing within this project.
Agilebits

provided Secfault Security with the source code and necessary binary builds for the Server API,
Web Application (1Password.com), 1Password CLI, 1Password in the Browser, and 1Password for
Desktop and Mobile.

Agilebits specified the following issues for the retest in November 2022:

• MITM Attack against Encrypted Credentials

• MITM Attack during Device Enrollment

• Prolonging Sessions by Nested Delegation

• MacOS Desktop App not using Secure GUI Restore

• SSO Login Bypass by Session Extension

2.2 Test Procedures
The overall project followed a white-box approach, which means that Agilebits provided the source
code, the compiled binaries and technical documentation for the solution. Therefore, the solution
has been analyzed by performing a source code review, as well as targeted dynamic testing.

The source code review has been performed in a manual fashion, i.e., without relying on automated
vulnerability scanners or similar tools. Besides identifying possible classical implementation
weaknesses, one main focus of the review was the identification of potential logic problems. This
requires an in-depth understanding of the solution's inner workings, which is best achieved by a
manual process.

The dynamic tests have been performed in a targeted fashion. On the one hand, this served the
purpose of validating issues identified during the source code review. On the other hand, dynamic
tests were also performed to obtain a better understanding of the overall solution and the interplay

Secfault Security Confidential Page 5 of 30

Chapter 2

of its individual components.

2.3 Project Execution
The project has been executed in the time frame from 2022-09-19 to 2022-10-14.

The consultants assigned to this projects were:

• Jennifer Gehrke

• Maik Münch

• Gregor Kopf

A retest was performed in conjunction with further tests of the 1Password8 client in the time frame
of 2022-11-14 to 2022-11-25.

The inspections were performed by the consultants:

• Jennifer Gehrke

• Gregor Kopf

Secfault Security Confidential Page 6 of 30

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Severity Status
MITM Attack against Encrypted Credentials 4.1 Design High Closed

MITM Attack during Device Enrollment 4.2 Design High Closed

Lax Authorization Concept for Delegating Sessions 4.3 Design Medium Won't Fix

Automatic Restoring of Devices 4.4 Observation Low Won't Fix

Prolonging Sessions by Nested Delegation 4.5 Design Medium Closed

MacOS Desktop App not using Secure GUI
Restore

4.6 Code High Closed

SSO Login Bypass by Session Extension 4.7 Code/Design Medium Closed
Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Confidential Page 7 of 30

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 MITM Attack against Encrypted Credentials
Summary

Type Location Severity Status
Design Encrypted Credential

Storage
High Closed

Technical Description

While analyzing the overall design changes introduced for the SSO feature, Secfault Security
identified a weakness that would allow the b5 backend to possibly compromise information stored
in users' vaults.

The entries in a vault are not stored in plain text on the backend servers. Instead, they are encrypted
with a key that is ultimately only known to the user. While this design is recommendable in terms of
privacy and security, it is not directly compatible with SSO-based logins: after logging in with their
IDP, the users would have to enter their "original" password again, in order to be able to access the
key material. In order to address this issue, Agilebits decided to implement a new process for SSO-
based sign-in. The core idea is to store the user's key material (their CredentialBundle) on the b5
backend, encrypted with a key that is tied to the user's device (e.g., a key that is stored in the
operating system's key chain). This way, clients could retrieve the key material from the server,
locally decrypt it, and then subsequently use it to access their vaults' contents.

The original version of this design made use of asymmetric encryption: during the initial device
enrollment phase, a client would generate an asymmetric key, store it in the system's keychain and
then use this key to encrypt their CredentialBundle. The encrypted CredentialBundle would
then be uploaded to b5, along with the public key used by the client. As b5 does not receive the
secret key, it is not able to directly decrypt the CredentialBundle.

However, as the public key is known to b5, it can generate its own version of an encrypted
CredentialBundle, containing cryptographic key material that it has access to. A client that would
use such a CredentialBundle could not access their vault entries (as the keys in the
CredentialBundle would not be the ones originally set by the user). However, when creating new
entries, the client would use the server-generated key material, and subsequently the server would

Secfault Security Confidential Page 8 of 30

Chapter 4

be able to decrypt the stored vault entries.

Recommended Action

The issue has been discussed with Agilebits during the engagement. A fixed version of the design
has already been provided to Secfault Security, so no further action is required.

Retest Status

During the retest performed in November 2022, this issue has been found to be fixed. The used
encryption scheme has been changed from asymmetric encryption to symmetric encryption. This
prevents the backend from encrypting (or decrypting) CredentialBundles, as the used symmetric
encryption key is not known to the backend.

Secfault Security Confidential Page 9 of 30

Chapter 4

4.2 MITM Attack during Device Enrollment
Summary

Type Location Severity Status
Design Device Enrollment High Closed

Technical Description

As described in section 4.1 of this document, the SSO feature required a number of changes to the
way clients log in on the b5 backend. As users can have multiple client devices, each client device
now has to have access to the user's CredentialBundle. This is achieved by the new device
enrollment process. During this process, a user first signs in on a new device using SSO. If the sign-
in succeeds and the backend finds no encrypted CredentialBundle for the device, the user is
prompted to open the OnePassword application on one of their existing devices. The existing device
and the new device then cooperate in order to make the user's CredentialBundle accessible to the
new device.

In a first step, the new device generates an asymmetric keypair and sends the public key to the
existing device via the b5 backend. Now the existing device generates a one-time code and a
random salt. The salt is encrypted with the new device's public key and sent to the new device via
b5. The one-time code is displayed on the existing device's screen and has to be manually typed into
the new device. The new device then computes an HMAC over the one-time code and the provided
salt and sends the result back to the existing device (again, via b5). If the HMAC matches the
existing device's expectations, the existing device locally decrypts its CredentialBundle and re-
encrypts it with the new device's public key. The encrypted data is then uploaded to b5.

The problem with this process is similar to the one described in section 4.1: the b5 backend could
maliciously replace the new device's public key with a key that it generated on its own. It could then
decrypt all information sent by the existing device, including the random salt. The random salt
could be forwarded to the legitimate new device, simply by re-encrypting it with the device's actual
public key. The new device would then perform the correct HMAC calculation, so that the existing
device would encrypt its CredentialBundle with the public key that has been generated by the b5
backend. This would result in the ability to compromise the user's key material.

It should be noted that this issue has been independently identified by Agilebits during their analysis
of the issue described in section 4.1 of this document.

Recommended Action

The issue has been discussed with Agilebits during the engagement. A fixed version of the design
has already been provided to Secfault Security, so no further action is required.

Secfault Security Confidential Page 10 of 30

Chapter 4

Retest Status

During the retest performed in November 2022, this issue has been found to be fixed. The overall
scheme for provisioning new devices has been reworked, and is now based on setting up a secure
channel between the two involved devices using CPace. This prevents the backend from modifying
data in transit during the provisioning.

Secfault Security Confidential Page 11 of 30

Chapter 4

4.3 Lax Authorization Concept for Delegating Sessions
Summary

Type Location Severity Status
Design Delegated Sessions Medium Won't Fix

Technical Description

A review of the server-side implementation of the new delegated sessions feature revealed that the
authorization controls in place focus on assigning the session to the correct user and account only.
No checks were found that apply to restricting clients for which a delegated session can be
requested.

Consequently, the current design should allow any authenticated application to request delegated
sessions for any other device. Due to routines automatically registering unknown devices in this
process, even new clients can be specified.

Based on this result, further considerations were made regarding the necessity and practicability of
additional restrictions. Since the feature is currently only supported by the desktop applications to
request sessions for the CLI client, local attacks can be reduced to attacks on the native message
communication between these two clients.

However, another question in this context is whether all client types have the same permissions. In
case any device type exists with less permissions than others, a delegated session could be utilized
to elevate those. Such a situation was actually found to be present by supporting device access
restrictions that can be applied on a vault basis, as illustrated in Figure 1.

Secfault Security Confidential Page 12 of 30

Chapter 4

Figure 1 - Vault App Access

This option suggests that specially critical vaults can be protected from being accessed by clients
running on less trusted devices, e.g. mobile phones. However, in the current design a hijacked
mobile phone session should still be able to requests sessions for other device types, such as
desktop applications, resulting in access to the vault.

Recommended Action

There are multiple options for addressing this issue. One option could be to accept the emerging
risk and to educate users about the fact that the device restriction feature is not intended to be used
for security-related decisions.

Another option would be to consider the introduction of more strict client restrictions to the current
design. While it is a known problem to reliably identify the device type in a client to server
communication, the issue might be addressed by enforcing specific device enrollment steps.

By implementing a mandatory device enrollment, which seems to be in place for several client

Secfault Security Confidential Page 13 of 30

Chapter 4

types already, the issuing of delegated sessions could be restricted to existing devices. In this
process or during a later "direct" session, a client should be required to enable that delegated
sessions can be requested for it and optimally provide a list of devices authorized to do so. During
these steps, the chosen procedures must ensure that the user agrees with these settings. It must be
remarked at this point, that the requesting party must no longer be able to change any server-side
information related to the target device, as currently supported.

To achieve an even higher level of security, cryptographic means could be introduced during this
enrollment on a client instant basis. Those could allow to validate that a delegated session request
originates from the target client, e.g. employing an end-to-end challenge-response authentication
mechanism based on signatures. Further the response could be wrapped in a way that the contents
remain confidential with respect to the intermediary client.

Retest Status

This security issue was not included in the retest in November 2022. Please see comments from
1Password in section 6 of this document, which explain the situation.

Secfault Security Confidential Page 14 of 30

Chapter 4

4.4 Automatic Restoring of Devices
Summary

Type Location Severity Status
Observation Delegated Session Low Won't Fix

Technical Description

During the inspection of the routines creating delegated sessions on the server side, it was observed
that deleted devices requesting such a session are automatically restored. Please note the following
excerpt from b5-main/server/src/logic/action/auth.go that contains the main procedures
related to this new feature:

1988 func DelegateSession(acs *access.VerifiedAccess, device *api.Device)
(*api.DelegateSessionResponse, api.Status) {
1989 acs.MustBegin("DelegateSession")
1990 defer acs.AutoRollback()
[..]
2021 existingDevice, err := acs.UnsafeFindDeviceByUUID(account.ID, user.ID,
device.UUID, lock.None)
2022 if err != nil {
2023 acs.LogError("DelegateSession failed to UnsafeFindDeviceByUUID for
uuid", device.UUID, "and user", user, ":", err)
2024 return nil, api.Status{Code: api.StatusInternalServerError}
2025 }
2026
[..]
2033
2034 if existingDevice.IsDeleted() {
2035 acs.LogInfo("DelegateSession: Device", existingDevice.UUID, "for
user", user.ID, "exists but is deleted, reauthorizing in cache")
2036 err = acs.ReauthorizeDeviceInCache(existingDevice)
2037 if err != nil {
2038 acs.LogError("DelegateSession failed to
ReauthorizeDeviceInCache:", err)
2039 return nil, api.Status{Code: api.StatusInternalServerError}
2040 }
2041 }

Here, the device UUID that is part of the session request is taken to perform a lookup in the device
cache. In case the device's state is found to be DeviceStateDeleted it is automatically set to
DeviceStateReauthorized.

Due to time limitations, the use-cases that lead to the deletion of a device were not retraced in the
b5 code base. From the impression gained by using the Web UI, it is assumed to be related to the

Secfault Security Confidential Page 15 of 30

Chapter 4

device deauthorization option offered at the user's profile.

Figure 2 - Deauthorize Device via Web UI

Dynamic tests showed, that a deauthorized CLI client will be added again to the list of authorized
devices in case a delegated session is requested for it afterwards. During this process, no differences
to the regular flow were observed. Since no special malicious crafting of the delegated session
request was performed, this behavior might possibly not meet user security expectations.

The actual advantage an attacker can gain from it, however, is considered very limited to not-
existent. As outlined in section 4.3, the delegated session feature currently allows to automatically
register new devices anyway. Therefore, an attacker could add new devices instead of restoring
deleted ones, without decreasing their abilities.

Further, this attack scenario has the precondition of getting access to a valid b5 session or sending
crafted native messages to a desktop application.

Recommended Action

The issue should be addressed in conjunction with the current design limitations described in
section 4.3, after defining the security level that should be applied for the delegated sessions feature.
In case it is decided to restrict the set of clients that a delegated session can be requested for, no
automated restoring of a client should take place during session creation.

Secfault Security Confidential Page 16 of 30

Chapter 4

Reproduction Steps

In order to reproduce this observation, please proceed as follows:

 1 Setup a test machine utilizing a desktop client and CLI application both supporting delegated
session.

 2 Add the CLI to the list of authorized device by requesting a delegated session for it.

 3 Use the Web UI to deauthorize the CLI application for the respective user.

 4 Request a new delegated session for the CLI.

 5 Check the list of authorized devices in the Web UI and find the CLI application to be present
again.

Retest Status

This security issue was not included in the retest in November 2022. Please see comments from
1Password in section 6 of this document, which explain the situation.

Secfault Security Confidential Page 17 of 30

Chapter 4

4.5 Prolonging Sessions by Nested Delegation
Summary

Type Location Severity Status
Design Delegated Sessions Medium Closed

Technical Description

With the introduction of the new SSO feature, it should be possible to force users to periodically
authenticate via SSO to be able to communicate with b5. Any ability of creating sessions of infinite
validity could therefore be considered a bypass of this protection measure. This might not only be
achieved by prolonging one session (please refer to section 4.7), but also by requesting new
sessions by means of an existing one.

While reviewing the details of delegated session entries created by the server, it was observed that
those are added to the session cache with a static expiry period. Therefore, it does not depend on the
expiry date of the parent session. Considering the new validity requirements mentioned above, the
idea of creating nested delegated sessions to renew the session time-frame arises. Nested delegated
sessions are explicitly supported by the implementation and are also described in the provided
feature documentation. Those are therefore considered an intended characteristic.

Further inspection of the server implementation was performed, to identify whether nested sessions
are automatically removed from the cache in case the root or parent session expires. No such
mechanisms were found. Consequently, it is assumed that the SSO login requirement can be
bypassed by requesting delegated sessions in an automated nested manner, generating a new session
shortly before the respective parent session expires. As a result, one obtains a valid b5 session at
any point in time.

Attempts to bypass the SSO login by the account user itself are regarded a valid attack scenario,
access to an initial valid session can therefore be presumed.

Recommended Action

In order to address this issue, routines should be added to the server implementation that ensure the
expiry of all nested sessions on the expiry of the root parent session.

Reproduction Steps

To retrace that delegated sessions are generated with a static expiry time-frame, one can inspect the
implementation of the function DelegateSession defined inside
b5-main/server/src/logic/action/auth.go:

1988 func DelegateSession(acs *access.VerifiedAccess, device *api.Device)

Secfault Security Confidential Page 18 of 30

Chapter 4

(*api.DelegateSessionResponse, api.Status) {
1989 acs.MustBegin("DelegateSession")
1990 defer acs.AutoRollback()
[..]
2069 // save after signin succeeded so that session is given an ID.
2070 acs.UnsafeSaveSession(delegatedSession)

This adds the generated session to the session cache using the function UnsafeSaveSession
implemented in b5-main/server/src/access/unverifiedaccess.go that must be considered a
wrapper for the function SaveUserSession inside
b5-main/server/src/cache/usersession.go:

 70 // SaveUserSession saves the user session in the cache
 71 func (c *Cache) SaveUserSession(userSession *model.UserSession) error {
[..]
 80 ttl := UserSessionUnverifiedTTL
 81 if userSession.IsLoggedIn() {
 82 ttl = UserSessionTTL
 83 }
 84
 85 buf, err := json.Marshal(userSession)
 86 if err != nil {
 87 l.Error(nil, "SaveUserSession failed to Marshal:",
userSession.SessionUUID, err)
 88 return err
 89 }
 90
 91 key := sessionKey(userSession.SessionUUID)
 92 l.Info(nil, "SaveUserSession saving to cache",
util.ObfuscateCacheKey(key))
 93
 94 if err := c.SessionCache.Send("SET", key, buf, "EX", ttl); err != nil {
 95 l.Error(nil, "SaveUserSession failed to SET",
util.ObfuscateCacheKey(key), ":", err)
 96 return err
 97 }
 98
 99 key = sessionsForUserKey(userSession.UserID)
100 if err := c.SessionCache.Send("SADD", key, userSession.SessionUUID); err
!= nil {
101 l.Error(nil, "SaveUserSession failed to SADD",
userSession.SessionUUID, " for user", util.ObfuscateCacheKey(key), ":", err)
102 return err
103 }
104
105 if err := c.SessionCache.Send("EXPIRE", key, ttl); err != nil {
106 l.Error(nil, "SaveUserSession failed to EXPIRE",
util.ObfuscateCacheKey(key), ":", err)

Secfault Security Confidential Page 19 of 30

Chapter 4

107 return err
108 }

The excerpt shows that the ttl variable is set independent of potentially existing parent sessions.

A textual search for the session fields RootSessionUUID and ParentSessionUUID used to track the
delegated session relationships reveals that no automated deletion from the cache is performed on
parent session expiration.

Further the general code flow for generating a new delegated session does not show any checks
related to the nesting depth or a limitation of target devices.

Retest Status

The server implementation was adjusted to link the lifetime of a delegated session to the
authentication time of the root session. This is achieved by recursively inheriting the LoginTime
field of the parent session, as defined in server/src/db/model/usersession.go:

108 func (s *UserSession) NewDelegatedSession(device *Device, clientIP string)
(*UserSession, error) {
109 randomBytes := random.NBytes(32)
[...]
141 delegatedSession.LoginTime = s.LoginTime
142 currentTime := time.Now().UTC()
143 delegatedSession.DelegationTime = ¤tTime

The UnsafeSaveSession function, which is called to store the delegated session in the respective
cache afterwards, does now contain a check whether the session is allowed to be valid for the time-
frame define as UserSessionTTL. It is refusing to store the session, in case its expiry would be
outside a configured period (currently seven days) starting at the LoginTime field value.

The implementation can be found in the file
b5-main/server/src/access/unverifiedaccess.go:

 701 func (acs *UnverifiedAccess) SessionCanLiveForAdditionalTTL(session
*model.UserSession, ttl int) bool {
 702 anticipatedEndTime := time.Now().Add(time.Duration(ttl) * time.Second)
 703 latestAcceptableStartTime := anticipatedEndTime.Add(-
constraints.UserSessionMaxAgeSeconds * time.Second)
 704
 705 return session.LoginTime.After(latestAcceptableStartTime)
 706 }
[...]
 728 func (acs *UnverifiedAccess) UnsafeSaveSession(session *model.UserSession)
error {
 729 ttl := cache.UserSessionUnverifiedTTL
 730
 731 if session.IsLoggedIn() {

Secfault Security Confidential Page 20 of 30

Chapter 4

 732 ttl = cache.UserSessionTTL
 733
 734 if !acs.SessionCanLiveForAdditionalTTL(session, ttl) {
 735 return errors.New("UnsafeSaveSession failed: session has reached
hard limit")
 736 }
 737 }
 738
 739 if err := acs.Cache.UnsafeSaveUserSession(session, ttl); err != nil {
 740 return err
 741 }
 742 return nil
 743 }

The issue was found to be mitigated by this code changes. Delegated sessions can no longer be used
to infinitely create fresh sessions, thereby keeping the user authenticated arbitrarily long.

It could be noted that the current session length is still not aligned with the user's SSO settings.
However, Agilebits explained that this is not one of their security goals. Rather, the limitations to
the session duration are intended to apply only to new sign-ins and to preventing the use of
biometric authentication after a certain amount of time has elapsed.

The issue is therefore considered to be fixed.

Secfault Security Confidential Page 21 of 30

Chapter 4

4.6 MacOS Desktop App not using Secure GUI Restore
Summary

Type Location Severity Status
Code MacOS Desktop App High Closed

Technical Description

MacOS offers a feature to automatically restore windows open on machine shutdown or for
windows sent to the background in situations of resource shortages. For this purpose, the window
data is serialized and stored in the file system. A flaw allowing for unsafe object deserialization was
identified in this context that allows for code execution in the context of the attacked process1.

The issue was addressed by Apple by restricting the classes for which objects will get deserialized.
Since applications can implement their own serialization and restore routines for their UI elements,
the protection measure cannot generally be applied. Instead, applications have to explicitly enable it
by implementing the method applicationSupportsSecureRestorableState to return true in
their NSApplicationDelegate.

Such a method implementation could not be found in the provided source code. It is therefore
assumed that the MacOS Desktop client is prone to the serious attack.

Recommended Action

An implementation of the applicationSupportsSecureRestorableState returning true should
be added to all MacOS applications. It must further be mentioned that this does not provide full
protection against the named attack class. The fact that objects still get deserialized, despite limited
to specific classes, might still lead to exploitable conditions - however, this greatly depends on
implementation details. Therefore, the general recommendation to properly address such flaws is
considering to refrain from deserializing objects at all. However, this could only be achieved by
disabling the feature for the respective application.

Retest Status

The issue was addressed in a two-fold manner. On the one hand the main application and thereby
the framework helper applications, which is based on Electron, was configured to depend on
Electron version 21. By this update it makes use of Chromium in version not less than
106.0.5249.512, which includes adjustments to mitigate the risk of unsafe object deserializations on
restoring the application UI. The performed changes were not audited in detail, since this would
exceed the scope of the assessment.
1 https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-

vulnerability/
2 https://www.electronjs.org/releases/stable#21.0.0

Secfault Security Confidential Page 22 of 30

Chapter 4

Besides that, secondary macOS applications, as used for launching or updating the application, were
modified to implement the applicationSupportsSecureRestorableState method as
recommended.

It should be noted that a risk of exploits in the context of this mechanism could remain, since
generic object deseralization is complex to secure thoroughly. Nevertheless, the issue was closed,
since the applications follow current security best practices.

Secfault Security Confidential Page 23 of 30

Chapter 4

4.7 SSO Login Bypass by Session Extension
Summary

Type Location Severity Status
Code/Design Session Handling Medium Closed

Technical Description

As described in section 4.5, the repeatable prolonging of an active b5 session can be considered a
bypass of the mandatory periodic SSO login option. Due to this, it was investigated whether the
expiry of an existing session can be extended. While the function TouchUserSession (defined
inside b5-main/server/src/cache/usersession.go), that serves exactly this purpose, seem to
only be used on upgrading unverified to verified sessions, the function SaveUserSession that saves
its argument to the session cache with a static expiry period is more broadly used. It is executed on
calls to the function MustSaveUserSession (implemented in
b5-main/server/src/main/web/app.go). This is used during issuing responses, in cases where
the user's session has changed as indicated by the acs.isChanged flag.

As one example, this flag is set by the function SetDeviceUUID (inside
b5-main/server/src/access/unverifiedaccess.go), which was found to be used on issuing a
delegated session. It is called inside the function registerDeviceForUserInCache and
activateDeviceForUser, which are called explicitly in the function DelegateSession or
implicitly via the function handleSigninSucceeded (both defined in
server/src/logic/action/auth.go).

Based on this, dynamic tests were performed to verify that the parent session is extended on
requesting a delegated session. During this, it was noted that the parent session did frequently not
expire after the expected time-frame of approx. 30 minutes after authentication, caused by other
unknown conditions. For this reason, the planned test-case could not be performed, since the effect
of the delegated session request on the session expiry could not be clearly differentiated from that of
other requests. This, however, leads to the impression that the session expiry is updated regularly
during the general use of the desktop application. This impression was confirmed by Agilebits
stating that use-cases exist that prolong the session time-frame.

As noted above, the user's ability to arbitrarily extend the session validity can be considered a
security issue, when periodic SSO authentication should be guaranteed.

Recommended Action

In order to address this issue, the session management procedures would need to be reworked to
ensure that sessions are not prolonged whenever a user is required to perform a new SSO

Secfault Security Confidential Page 24 of 30

Chapter 4

authentication.

Reproduction Steps

In order to reproduce this issue, please proceed as described below. Set up a MacOS desktop
application to make use of an intercepting proxy for HTTPS connections. Lock and unlock the
account and note the time of the user authentication by searching for the recent requests towards
POST

/api/{v1,v2,v3}/auth. Now intercept the next request before those are submitted to the server
and record it including all headers for later use. Drop the same and all following requests to ensure
that those are not send to the server.

After the session should have expired, send the recorded request and observe that the server is
responding with a HTTP 401 Unauthorized error message.

Repeat the process, but change some entries via another client after half of the session expiry time-
frame. This should automatically trigger some requests sent by the intercepted client. Intercept
those again and forward the first one or two to the server and record the next one without
forwarding. Drop it and all further requests until the session should have expired. Send the recorded
request and observe that a valid response is returned.

Check in both tests that the client does not issue any authentication related requests in between.
Since the conditions on that the session is prolonged are not fully known, the second procedure
might need to be repeated to obtain the desired result.

Retest Status

Both the TouchUserSession and UnsafeSaveSession functions, where the latter is internally
called by SaveUserSession, were found to be modified. For sessions that are considered logged in,
a check is performed that no session prolongation beyond a configured time-frame (currently seven
days) will take place. For more details on the implemented routine, please refer to the reproduction
steps of issue 4.5.

It could be noted that the current session length is still not aligned with the user's SSO settings.
However, Agilebits explained that this is not one of their security goals. Rather, the limitations to
the session duration are intended to apply only to new sign-ins and to preventing the use of
biometric authentication after a certain amount of time has elapsed.

The issue is therefore considered to be fixed.

Secfault Security Confidential Page 25 of 30

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 Android Password Field Allows Pasting HTML
It was noted that the android client (version 8.9.3) allowed to paste HTML into the password field
upon login. When viewing the pasted password, the HTML was actually rendered. This could lead
to self-XSS attack. Most software, e.g. Browsers, will apply some form of XSS sanitization to
HTML pasted from the clipboard, but the past has shown that these sanitizers might be bypassed.3
To reproduce this observation, please go to any website and copy some text with notable html
content e.g., bold text and paste it into the password field. Note that it also suggests "Paste as plain
text". Now please click on the eye symbol to view the rendered password.

5.2 Cursory Review of new SSO Design
During the engagement, Secfault Security discussed the findings described in sections 4.1 and 4.2
with Agilebits. The issues have been addressed by Agilebits and a new design has been provided.
This new design has been subject to a cursory inspection by Secfault Security. The results of this
inspection are described in this section.

Two major changes have been introduced in order to address the identified issues. The first change
is that a client's CredentialBundle is now no longer encrypted using an asymmetric key. Instead,
symmetric cryptography is used now. This prevents the backend from simply generating its own
CredentialBundle and encrypting it with the client's key.

The second change is in the device enrollment process. The process has been changed, so that it
now relies on using a PAKE protocol to confirm that both, the new and the existing device share the
same one-time code. After the PAKE has been performed, both devices also share a strong
cryptographic key, which is then used to establish a secure channel between the devices. Over this
secure channel, the devices can now exchange the CredentialBundle.

Overall, the changes address the identified problems. It should be noted, however, that during the
review of the new design, one potential issue has been identified:

The backend could still influence a client's behavior with respect to handling CredentialBundles;
suppose a client has already been fully enrolled and this client now signs in on the backend. The
backend could tell the client that it has no stored CredentialBundle (even though it actually does),
and so the client would re-use its existing device key to encrypt its CredentialBundle. While this
does not appear to be exploitable in the current design, it might still be advisable to let the client

3 See Copy & Pest by Mario Heiderich as example https://www.slideshare.net/x00mario/copypest

Secfault Security Confidential Page 26 of 30

Chapter 5

generate a fresh device key every time it uploads encrypted CredentialBundles. This issue has
been found to be addressed properly during the review of the updated implementation performed in
November 2022.

During the retest performed in November 2022, an update to the design document has been
provided, which has been subject to review. The overall concept of relying on symmetric encryption
for the CredentialBundle s, and of using CPace for negotiating a session key between the two
devices during additional device enrollment is still in place. However, the key management process
has been updated. The new scheme involves adding a "bundle version specifier" to the additional
authenticated data of encrypted CredentialBundle s; this addresses possible problems with future
changes in the format of the encrypted blob. Furthermore, the PAKE handshake now also includes
the identifiers of both involved devices in its channel identifier.

Secfault Security Confidential Page 27 of 30

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits reviewed the identified issues and
provided feedback, describing their assessment. In order to provide full transparency, this feedback
is included in the below sections.

6.1.1 MITM Attack against Encrypted Credentials (Finding 4.1)
We were notified of this finding at the beginning of the test window and immediately started
working on a fix. The finding has been retested by the vendor during a November pentest.

6.1.2 MITM Attack during Device Enrollment (Finding 4.2)
We were notified of this finding at the beginning of the test window and immediately started
working on a fix. The finding has been retested by the vendor during a November pentest.

6.1.3 Lax Authorization Concept for Delegating Sessions (Finding 4.3)
We already acknowledge in the 1Password Security Design white paper that client side controls are
the weakest control and are easily circumvented. This finding will not be fixed.

6.1.4 Automatic Restoring of Devices (Finding 4.4)
The design for delegated sessions required that devices that hadn't even been registered before are
registered as part of the delegation. Given that a "malicious" device could just say it was a new
device, not sure we gain much by adding a restriction here. This finding will not be fixed.

6.1.5 Prolonging Sessions by Nested Delegation (Finding 4.5)
We accepted this finding and implemented a fix that has since been retested by the vendor during a
November pentest.

6.1.6 MacOS Desktop App not using Secure GUI Restore (Finding 4.6)
We accepted this finding and implemented a fix that has since been retested by the vendor during a
November pentest.

6.1.7 SSO Login Bypass by Session Extension (Finding 4.7)
We accepted this finding and implemented a fix that has since been retested by the vendor during a
November pentest.

Secfault Security Confidential Page 28 of 30

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its severity. The meaning of the individual ratings are provided in the
following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description
Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Severity
The severity of a vulnerability describes a combination of the likelihood of attackers exploiting the
vulnerability, and the impact of a successful exploitation.

Severity Rating Description
Not Exploitable This finding can most likely not be exploited.

Low The vulnerability is either hard to exploit (e.g., because a successful
exploitation requires significant prerequisites) or its consequences can be
considered benign.

Medium The vulnerability can be exploited (possibly under certain preconditions) and a
successful exploit can be used to at least partially bypass the security
guarantees of the solution.

High The vulnerability can be exploited easily and a successful exploit bypasses one
of the core security properties of the solution.

Critical The vulnerability can be exploited easily and a successful exploit can be used
to compromise systems beyond the scope of the analysis.

Secfault Security Confidential Page 29 of 30

Chapter 8

8 Glossary

Term Definition
API Application Programming Interface

CLI Command Line Interface

GUI Graphical User Interface

HMAC Keyed-Hash Message Authentication Code

HTML Hypertext Markup Language

HTTPS HTTP over SSL

IDP Identity Provider

MITM Man-In-The-Middle

PAKE Password Authenticated Key Exchange

SSO Single Sign-On

UUID Universally Unique Identifier

XSS Cross Site Scripting

Secfault Security Confidential Page 30 of 30

	1 Executive Summary
	2 Overview
	2.1 Target Scope
	2.2 Test Procedures
	2.3 Project Execution

	3 Result Overview
	4 Results
	4.1 MITM Attack against Encrypted Credentials
	4.2 MITM Attack during Device Enrollment
	4.3 Lax Authorization Concept for Delegating Sessions
	4.4 Automatic Restoring of Devices
	4.5 Prolonging Sessions by Nested Delegation
	4.6 MacOS Desktop App not using Secure GUI Restore
	4.7 SSO Login Bypass by Session Extension

	5 Additional Observations
	5.1 Android Password Field Allows Pasting HTML
	5.2 Cursory Review of new SSO Design

	6 Customer Feedback
	6.1.1 MITM Attack against Encrypted Credentials (Finding 4.1)
	6.1.2 MITM Attack during Device Enrollment (Finding 4.2)
	6.1.3 Lax Authorization Concept for Delegating Sessions (Finding 4.3)
	6.1.4 Automatic Restoring of Devices (Finding 4.4)
	6.1.5 Prolonging Sessions by Nested Delegation (Finding 4.5)
	6.1.6 MacOS Desktop App not using Secure GUI Restore (Finding 4.6)
	6.1.7 SSO Login Bypass by Session Extension (Finding 4.7)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Severity

	8 Glossary

