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1 Executive Summary
Secfault Security was tasked by Agilebits with a security review of selected components of the 
1Password ecosystem, namely the CLI integration and the SSH agent functionality. The review has 
been performed in the time frame from 2022-02-14 to 2022-03-01. This document describes the 
results of the project.

During the review a number of issues, which are described in detail in section 4 of this document, 
have been identified. One of the more severe issues might allow sufficiently-privileged local 
attackers to trick the user into granting SSH agent authorization for malicious processes. Other 
issues include problems with the way the CLI handles the execution of external commands, which 
could result in malicious processes started by the CLI being able to obtain access to the user's 
1Password session. Additionally, a number of minor problems have been identified, including for 
instance the insecure handling of terminal escape sequences or the use of lax parsers.

Section 5 of this document provides a number of additional observations and recommendations. 
This includes an approach for addressing the known security issue concerning the manipulation of 
SSH key titles as shown in the approval prompt.

Overall, the reviewed codebase left a positive impression. The code is well-structured and readable 
and has been implemented with security in mind.

After having received a draft version of this document, Agilebits provided feedback on the 
identified issues, which can be found in section 6 of this document.
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2 Overview
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store various passwords, software licenses, and other 
sensitive information in virtual vaults.

Agilebits tasked Secfault Security with a review of selected parts of the CLI implementation and the
SSH integration of the solution.

In section 2.1 of this document, a description of the project's scope is provided. Section 2.2 provides
details on the test procedures.

2.1 Target Scope
The following source code repositories have been provided by Agilebits for review:

• op at revision 7398e6be5c4d359ecb2d52a5116c2b66d7ccad9f

• core at revision 22e7c45a8cffbbaf79be1510cfe24b955c1421a9

Furthermore, Agilebits provided the respective binaries for the above mentioned revisions.

2.2 Test Procedures
The overall project followed a white-box approach, which means that Agilebits provided the source 
code, the compiled binaries and technical documentation for the solution. Therefore, the solution 
has been analyzed by performing a source code review, as well as targeted dynamic testing.

The source code review has been performed in a manual fashion, i.e., without relying on automated 
vulnerability scanners or similar tools. Besides identifying possible classical implementation 
weaknesses, one main focus of the review was the identification of potential logic problems. This 
requires an in-depth understanding of the solution's inner workings, which is best achieved by a 
manual process.

The dynamic tests have been performed in a targeted fashion. On the one hand, this served the 
purpose of validating issues identified during the source code review. On the other hand, dynamic 
tests were also performed to obtain a better understanding of the overall solution and the interplay 
of its individual components.

2.3 Project Execution
The project has been executed in the time frame from 2022-02-14 to 2022-03-01 in 15 person days.

The consultants assigned to this projects were:

• Maik Münch
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• Jennifer Gehrke

• Gregor Kopf
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3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Exploitability Attack Impact
Lax Parsing for Dotenv Files 4.1.1 Code Medium Medium

Output of Escape Sequences 4.1.2 Code Low-Medium Medium

Race Condition in File Creation 4.1.3 Code Low-Medium Medium

Access to Parent Environment in op run 4.1.4 Code Medium High

Missing Privilege Dropping in op run 4.1.5 Code Medium High

Secret Data in Command Arguments 4.1.6 Code Low-Medium Medium

ToCToU Weakness in Windows Peer 
Verification

4.1.7 Code Medium High

Insufficient Peer Verification on Unix 
Sockets

4.2.1 Design Medium High

Unauthenticated Meta Information in 
Database

4.2.2 Design Medium Medium

Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective 
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.
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4 Results
The issues identified during the project are described in detail in the following sections. For each 
finding, there is a technical description, recommended actions and - if necessary and possible - 
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to 
section 7 of this document.

4.1 CLI Tools

4.1.1 Lax Parsing for Dotenv Files
Summary

Type Location Exploitability Attack Impact
Code godotenv (third-party 

dependency)
Medium Medium

Technical Description

While reviewing the dotenv file parsing of the op inject command, it was found that the used 
parser implementation is rather lax. A cursory inspection of the parser code1 revealed that - for 
instance - the handling of comments does not appear to properly address situations where multiple 
quotes occur in a nested fashion:

func parseLine(line string, envMap map[string]string) (key string, value 
string, err error) {

if len(line) == 0 {
err = errors.New("zero length string")
return

}

// ditch the comments (but keep quoted hashes)
if strings.Contains(line, "#") {

segmentsBetweenHashes := strings.Split(line, "#")
quotesAreOpen := false
var segmentsToKeep []string
for _, segment := range segmentsBetweenHashes {

if strings.Count(segment, "\"") == 1 || strings.Count(segment,
"'") == 1 {

if quotesAreOpen {
quotesAreOpen = false
segmentsToKeep = append(segmentsToKeep, segment)

} else {

1 https://github.com/joho/godotenv/blob/c40e9c6392b05ba58e6fea50091ce35a1ef020e7/godotenv.go#L100
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quotesAreOpen = true
}

}

if len(segmentsToKeep) == 0 || quotesAreOpen {
segmentsToKeep = append(segmentsToKeep, segment)

}
}

line = strings.Join(segmentsToKeep, "#")
}

It can be observed that the code would treat a string like "'" # foo as one actual literal - contrary 
to what one might expect.

An attacker with the ability to create dotenv files might abuse this behaviour in order to craft 
seemingly benign dotenv files, which would inadvertently leak secret information into unrelated 
environment variables.

It should be noted that no in-depth review of the parser implementation has been performed and that
the presence of other issues can hence not be ruled out.

Recommended Action

In order to address this issue, a first step could be to perform a more in-depth review of the used 
dotenv parser in order to identify further possible issues. All identified problems should 
subsequently be reported upstream in order to be addressed by the developers of the library.

Reproduction Steps

In order to reproduce this issue, please install godotenv and create a dotenv file /tmp/test.env 
with the following contents:

PASSWORD=super secret
USERNAME='as908dzf/"' # Has to be quoted, because we hard-code it. When using 
variable references like $PASSWORD, this is not needed

Then, please use a command as shown below to observe the behaviour of the parser:

 go/bin/godotenv -f /tmp/test.env env𝝺
USERNAME='as908dzf/"' # Has to be quoted, because we hard-code it. When using 
variable references like super secret, this is not needed
PASSWORD=super secret

It can be observed that the USERNAME variable - contrary to what one might expect - not only 
contains the full comment, but also exposes the contents of the PASSSWORD variable within this 
comment.
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4.1.2 Output of Escape Sequences
Summary

Type Location Exploitability Attack Impact
Code CLI Tools Low-Medium Medium

Technical Description

While reviewing the implementation of the CLI tools, it was found that the op tool generally does 
not filter terminal escape sequences when writing data to stdout. An attacker with the ability to 
control (parts of) the tool's output could therefore inject malicious escape sequences.

Depending on the used terminal emulator, this can lead to a number of possible issues. Historically, 
there have been code execution vulnerabilities in a number of terminal emulators, such as xterm or 
more recently in xterm.js2.

However, even without such issues, outputting untrusted escape sequences can result in potential 
problems. Attackers could for instance use escape sequences in order to display misleading 
information to the user. One obvious example of such misleading information could be fake 
password prompts, aiming to trick the user into entering sensitive passwords into their command 
shell.

Recommended Action

In order to address this issue, it is recommended to filter terminal escape sequences when the op 
tool interacts with a tty.

Reproduction Steps

In order to demonstrate the presence of the problem, the following Python script can be used to 
generate a file named poc.json, which contains a sequence of terminal escape sequences aiming to 
trick a user into entering their password:

import sys

with open('poc.json', 'w') as f:
    f.write(u"\u001b[?25l\u001b[2J\u001b[1;1HPlease enter your password:")
    for i in range(1000000):
        f.write(u"{}\u001b[50D".format(' '*50))

The file poc.json can subsequently be added to a vault as shown below:

$ op document create poc.json

2 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-0542
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After adding the file, the target user could be tricked into displaying the file:

$ op document get poc.json

The escape sequences in the above PoC code will display a password prompt, which could make the
user assume they are still interacting with the op tool - while in reality, they would enter their 
password into their command shell, which in turn might for instance save it in the history file.
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4.1.3 Race Condition in File Creation
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/opio/

file.go
Low-Medium Medium

Technical Description

The CLI tools offer a number of ways for creating files. For instance, the op inject command can 
be used to parse template files, fill in secret information and create new files. While reviewing the 
file creation logic in op-cli/command/opio/file.go, it was identified that the implementation of 
CreateFile contains a number of possible race conditions. Further, it also does not appear to 
properly consider symbolic links.

Please consider the below excerpt from the code:

func CreateFile(name string, fileMode os.FileMode, io Stdinout, force bool) 
(io.WriteCloser, error) {
   var file *os.File
   _, err := os.OpenFile(name, os.O_WRONLY, fileMode)
   if err == nil {
      // Return error when in pipe
      if io.IsOutputPiped() && !force {
         return nil, fmt.Errorf("file %s already exists", name)
      }

      if !force {
         prompt := fmt.Sprintf("File %s already exists, overwrite it? [Y/n] ", 
name)
         if ok, _ := input.ProcessYesNoReturnPromptRW(prompt, io.TTYOrStdin(), 
os.Stderr); !ok {
            fmt.Println("Aborting.")
            return nil, ErrAborted
         }
      }
      // This is necessary in order to wipe the contents of the previously 
existing file.
      file, err = os.Create(name)
      if err != nil {
         return nil, fmt.Errorf("could not overwrite file %s: %s", name, err)
      }

   } else if os.IsNotExist(err) {
      file, err = os.Create(name)
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      if err != nil {
         return nil, fmt.Errorf("could not create file %s: %s", name, err)
      }
   } else {
      return nil, fmt.Errorf("could not open file %s: %s", name, err)
   }

   err = file.Chmod(fileMode)
   if err != nil {
      return nil, fmt.Errorf("could not set permissions on file at %s: %s", 
name, err)
   }
   return file, nil

It can be observed that the code first checks if the target file already exists. If it exists, it prompts 
the user whether to overwrite the existing file. Subsequently, it clears the file's contents and changes
the file permissions. It should be noted that these operations are not performed in an atomic manner.
For instance, the target file could be created just after the code checks for its existence. 
Furthermore, if the target file is a symbolic link, the code could write files to unintended locations. 
Depending on the respective environment, this might turn into an exploitable condition.

One obvious example of such an exploitable condition leverages the missing check for a symbolic 
link: Assume that a legitimate user Alice uses the op inject command to create a file named 
/tmp/foo. The attacker, Bob, knows about this and creates a symbolic link /tmp/foo beforehand. 
The symbolic link points to Alice's ~/.bashrc or a similar sensitive configuration file. Alice now 
runs the op inject command. As the target of the symbolic link already exists, the code will 
prompt her to overwrite the file /tmp/foo. She confirms this prompt and thereby accidentally 
overwrites her ~/.bashrc.

In order to improve the attack, Bob might attempt to create the symbolic link /tmp/foo directly 
after the code checked for the file's presence. In this case, no prompt would be shown to Alice.

It should be noted that the above example relies on the fs.protected_symlinkssysctl variable 
being set to zero. However, on the one hand the value of this variable is not under the control of the 
analyzed codebase. On the other hand, more involved attacks, which do not rely on 
fs.protected_symlinks being set to zero, cannot fully be ruled out.

Recommended Action

In order to address this issue, the following approach for creating a file is recommended:

 1 Attempt to open the file using the O_CREAT|O_EXCL|O_NOFOLLOW flags, while directly passing 
the desired file permissions as well

 2 When the result of the above operation is EEXIST, prompt the user to overwrite the file. In case 
of ELOOP, inform the user about the fact that a symbolic link has been detected and abort the 
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process

 3 If the user confirms, unlink the file and re-start the process at step 1

Reproduction Steps

This finding has been identified in a static source code review and has not been reproduced 
dynamically. Hence, no reproduction steps are provided.
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4.1.4 Access to Parent Environment in op run
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/run.go Medium High

Technical Description

The op run command allows users to start processes, passing secrets stored in 1Password via 
environment variables. In order to prevent the started process from directly interacting with the 
running OP8 instance, the code removes a number of sensitive environment variables prior to 
executing the child process.

However, it should be noted that the started child process could still be able to obtain such 
environment variables from its parent process by reading /proc/<ppid>/environ. This could 
allow malicious child processes to interact with the running OP8 instance.

Recommended Action

In order to address this issue, the PR_SET_DUMPABLE attribute of prctl could be used to make the 
op process inaccessible by its child processes.

Reproduction Steps

In order to reproduce this issue, please use the following Python script:

#!/usr/bin/env python3

import os

print("My environment:")
for e in os.environ:
    if 'OP_SESSION' in e: print(e)

stat = open("/proc/self/stat").read()
ppid = stat.split(" ")[3]
print("ppid = " + ppid)

penv = open("/proc/" + ppid + "/environ").read()
entries = penv.split('\0')
print("Parent's environment:")
for e in entries:
    if 'OP_SESSION' in e: print(e)

When started with op run, the script should first display the environment variables it can directly 
access. Please note that the OP_SESSION variable is not set. However, by reading the environment of
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its parent process, the script can still access the contents of the OP_SESSION variable, as the below 
excerpt illustrates:

 op run python poc.py𝝺
My environment:
GNOME_DESKTOP_SESSION_ID
DESKTOP_SESSION
ppid = 2740520
Parent's environment:
DESKTOP_SESSION=regolith
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
OP_SESSION_secfaulttest1=nveh5yNn4NzHQLbPrVm6vQOQf-ch8o0ZoND_GOGPzk8
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4.1.5 Missing Privilege Dropping in op run
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/run.go Medium High

Technical Description

While reviewing the implementation of the op run command, it was found that the op tool does not
drop its privileges prior to executing its child process. For enabling the new "Biometric Unlock" 
feature on Linux, the op binary belongs to the group onepassword-cli and has the setgid flag set.
This means that the binary will have its group set to onepassword-cli even if it is started by a user
who is not a member of this group. This mechanism serves the purpose of being able to identify the 
binary when it communicates with OP8 via a Unix socket.

The fact that the op binary does not drop its privileges however means that processes started by op 
run will also have the group onepassword-cli, which could enable them to directly interact with 
the running OP8 instance via its Unix socket.

Recommended Action

During the execution of the project, the issue was communicated to Agilebits, who stated that the 
issue has already been addressed by dropping privileges in the op process.

Reproduction Steps

In order to demonstrate the presence of this issue, the following command can be used:

op run -- id -g --name

The output of the id command started via op run indicates, that the child process indeed belongs to
the onepassword-cli group.

Secfault Security Confidential Page 17 of 34



Chapter 4 

4.1.6 Secret Data in Command Arguments
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/

signin.go
Low-Medium Medium

Technical Description

While reviewing the implementation of the op CLI tool, it was found that the op signin command 
accepts possibly sensitive information via command line arguments. The syntax for invoking the 
command is signin [<sign_in_address> [<email_address> [<secret_key>]]], which 
indicates that the secret_key for a user account could be provided on the CLI. This might leak the 
secret key info the user's shell history, as well as in the system's process list (e.g., accessible via the 
ps command).

Recommended Action

In order to address this issue, it is recommended to at least inform users about the potential risks of 
passing data as command arguments. If using command arguments is required for convenience, it 
could be advisable to process such arguments only if a specific flag (such as --insecure) has been 
provided.

Reproduction Steps

In order to reproduce the issue, please use the op signin command, providing the secret_key as a
parameter. Then, please inspect the process list of the system, as well as the respective user's shell 
history file.
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4.1.7 ToCToU Weakness in Windows Peer Verification
Summary

Type Location Exploitability Attack Impact
Code CLI Tools Medium High

Technical Description

The Windows CLI tools connecting to a named pipe to communicate to the main application are 
verified based on Authenticode signatures. The signature of the executable is checked and its issuer 
is ensured to belong to AgileBits. This procedure consists of multiple steps:

 1 First, the PID of the connecting process is determined using the API function 
GetNamedPipeClientProcessId

 2 The execution path of the process is requested by a call to QueryFullProcessImageNameW

 3 The file at the execution path is opened

 4 The execution path is provided as input to WinVerifyTrust to perform the Authenticode 
verification

 5 The subject of the signature issuer, as retrieved from the trust store, is checked to belong to 
AgileBits

As known to Agilebits this validation steps might be affected by Time-of-check-to-time-of-use 
(ToCToU) problems. For this reason, step 3 was implemented. It should lock the respective file, to 
prevent it from being renamed and overwritten before it is read as part of step 4 and 5. This should 
rule out that an attacker performs a connection with a malicious binary "A" and renames the CLI 
tools binary to binary "A" (and binary "A" to something else) directly after step 2. Thereby, the 
legitimate binary would be used in step 4 and 5 although it is not the actual executable.

The implementation of this approach, however, suffers from an implementation issue. It should be 
noted here, that this perception was gained by a static code review and was not confirmed 
dynamically.

The issue arises from the selection of the function std::fs::File::open3 for acquiring a file lock. 
An inspection of its source code4 showed the internal utilization of std::fs::OpenOptions::open:

pub fn open<P: AsRef<Path>>(path: P) -> io::Result<File> {
    OpenOptions::new().read(true).open(path.as_ref())
}

A further cursory inspection of the documentation for the Windows std::fs::OpenOptions 

3 https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.open
4 https://doc.rust-lang.org/stable/src/std/fs.rs.html#327-329
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extension revealed the default sharing mode5 requested for the file:

By default share_mode is set to FILE_SHARE_READ | FILE_SHARE_WRITE | 
FILE_SHARE_DELETE. This allows other processes to read, write, and delete/rename 
the same file while it is open. Removing any of the flags will prevent other processes 
from performing the corresponding operation until the file handle is closed.

As the implementation of std::fs::File::open does not explicitly use the function 
std::os::windows::fs::OpenOptionsExt::share_mode to clear all flags (note the example in 
the documentation6), it is expected to utilize the mentioned defaults. As a result, it should still be 
possible to rename and overwrite the file after step 3.

On a successful attack, the connection of an attacker-controlled binary would be accepted by the 
named pipe to make requests on behalf of the CLI tools.

Recommended Action

Generally, a more in-depth analysis of the situation is recommended. The missing file locking 
should be added by using appropriate open flags on the Windows platform.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced 
dynamically. Hence, no reproduction steps can be provided.

4.2 SSH Agent

4.2.1 Insufficient Peer Verification on Unix Sockets
Summary

Type Location Exploitability Attack Impact
Design ssh/op-ssh-agent/src/

lib.rs
Medium High

Technical Description

While reviewing the SSH agent socket communication, it was found that on Unix systems, when 
receiving a new incoming message to the SSH Agent socket, the peer process is determined based 
on its PID. Please consider the following excerpt from ssh/op-ssh-agent/src/lib.rs:

op_log::debug!("connection received");
let callback = shared_callback.clone();
let authorized_sessions = shared_authorized_sessions.clone();

5 https://doc.rust-lang.org/stable/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode
6 https://doc.rust-lang.org/stable/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode
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let handler = tokio::time::timeout(Duration::from_secs(30), async move {
    while let Some(msg_event) = incoming.next().await {
        let message = match msg_event {
            Ok(msg) => msg,
            Err(e) => {
                // If we can't get a message, then we can't do anything else 
for this
                // specific connection.
                op_log::warn!(
                    "failed to receive agent request({}), dropping client",
                    e
                );
                break;
            }
        };

        let sock_pid = incoming.pid();

The pid function is implemented inside op-ipc/src/ipc/unix.rs and utilizes the peer_cred 
function offered by the tokio::net::UnixStream struct:

pub fn pid(&self) -> Option<u32> {
    let peer_creds = self.0.get_ref().peer_cred().log_err().ok()?;
    let pid = peer_creds.pid()?;
    pid.try_into().ok()
}

The documentation states that this "Returns effective credentials of the process which called 
connect or socketpair"7. However, sockets can be shared with other processes by sending the 
respective file descriptor via a Unix socket. As already hinted by the documentation, a socket 
message must therefore not originate from the process that initially established the connection. This 
can lead to a wrong PID value and thereby to wrong process information lookups during the 
approval process.

As part of the assessment it was analysed whether this behavior can be misused by an attacker to 
reuse the key approval given for another process. The core problem in the reviewed implementation
is the assumption that the process establishing the socket connection still needs to be running. This 
is however not necessarily the case, as a transferred socket remains usable even after termination of 
the process that originally opened the file descriptor. As a result, it is possible to store the socket for 
a certain time in a second attacker-controlled process and wait for an approved process to run with 
the same PID as the process that originally opened the connection. Since any generation of the 
op_sys_info::ProcessInformation for this PID will now utilize the information for the 
legitimate process, the socket connection will automatically be approved by the agent's session 
when sending signature requests.

7 https://docs.rs/tokio/0.1.12/tokio/net/struct.UnixStream.html#method.peer_cred
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The approach was dynamically tested on a system with a reduced maximal number of PIDs and 
ensuring the rapid reuse of the relevant PID, proving its general applicability. An attacker with 
access to the SSH agent socket can thereby access keys that get approved for the attacked process.

Recommended Action

In order to address this issue, it is recommended to record the start time of the remote process, when
a socket connection is originally established. Once a message is sent to the socket, the start time of 
the remote process should be checked again; if it does not match the recorded start time, the 
connection should be aborted.

Reproduction Steps

The generated Proof-of-Concept consists of the following steps:

 1 Reduce the maximal number of PIDs for the system

 2 Start a main process listening on a Unix socket and storing incoming file descriptors

 3 Consume the majority of free PIDs with wait processes

 4 For the remaining free PIDs: Open processes connecting to the SSH agent socket and sending the
respective file descriptor to the main process.

 5 Terminate all processes used in step 4 once the system ran out of free PIDs

 6 Start a legit process performing a SSH connection with a key stored in OP (The process should 
automatically get assigned one of the PIDs already used in step 4)

 7 Approve the access to the SSH key requested by the process of step 6

 8 Let the main process instantly use the stored file descriptor for the PID of the process of step 6 
and request a signature using the key from step 7

The PoC implementation has been delivered to Agilebits separate from this report.
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4.2.2 Unauthenticated Meta Information in Database
Summary

Type Location Exploitability Attack Impact
Design OP Core Medium Medium

Technical Description

While analyzing the mapping between the data shown in the approval prompts for the SSH agent or 
CLI biometric unlock prompts and the actual secrets that become accessible, it was identified that 
the OP database contains various kinds of unauthenticated metadata. This could allow an attacker 
with access to the respective file system location to modify this data. While this problem is known 
for the SSH agent key titles (please refer to section 5.2 for a potential solution to this), it seems to 
be a more general issue.

Dynamic tests showed, for example, that the account name displayed throughout the client UI and 
in the CLI biometric prompts can be changed as well as deleted items can be reactivated. Thereby, 
users can be tricked to approve CLI access to items of unintended accounts and deleted credentials 
get accessible without any user interaction.

Cursory tests hint that data that is not cryptographically protected locally, e.g. entries consisting of 
JSON data blobs, can be modified and will become available latest during unlock. This concerns the
various plain text data entries, including row references defining the object's general context, but 
might also be of relevance for the meta data attached to encrypted blobs. Whether any security 
issues exist in the latter case was not analyzed, as it highly depends on the utilized cryptographic 
implementations which are out-of-scope for the performed assessment.

The impact was rated to be medium, but only relates to the attack scenario of changing the account 
display name and to the reactivation of items. The impact of this general issue can be considerably 
higher depending on the type of data that can be altered.

Recommended Action

The ability to tamper data stored in the OP database should be assessed in more detail. It is 
advisable to introduce a general routine for ensuring data authenticity or integrity. While it is 
understood that some data needs to be available even before the user password is provided, the 
majority of data is loaded on a successful unlock and should therefore be protected by default. 
Unsecured data should be handled separately and may only be used for this specific use case and 
when authentication routines or integrity checks cannot be applied.

One example for this is the account display name. It is already provided to the user before the first 
unlock, but is also used as part of the GUI afterwards. In the second case, it is not necessary to read 
its value without a previous integrity check. Further, similar to the mitigation proposed against 
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manipulations to the SSH key titles (see section 5.2, the account name can be checked on successful
biometric unlock against an authenticated value and be rejected in case of modifications.

It is further considered likely that only little exceptions exist that, similar to the account name for 
the unlock screen, cannot be covered. Although Secfault Security has no full understanding of the 
general cryptographic design, the current impression is that after the initial unlock of the OP 
application, the user password or derived values remain accessible even when the account is locked.
In this case, it would be possible to utilize them to check the integrity of data even during this. 
Before the initial unlock, secondary features such as SSH are not available anyway and do therefore
not require access user specific data.

In summary:

• Data should be authenticated by default.

• Only minimal exceptions should be defined explicitly.

• The integrity checks may only be omitted for this data and in cases where the cryptographic 
material for performing the integrity checks is not available.

• Mitigations should be implemented to detect modifications as soon as possible, optimally before 
disclosing sensitive data or elevating privileges (see the approach described in section 5.2).

Reproduction Steps

To reproduce this issue the following general procedure could be used:

First, please lock the OP application and run the following command to open the database:

sqlite3 ~/.config/1Password/1password.sqlite

Now, perform the according changes to the database and unlock the OP application to ensure that 
the data gets reloaded.

Reactivation of Items
As a preparation, please note the UUID of an item using the feature "Copy item UUID". Now, 
please follow the general procedure and execute the following SQL command for the noted UUID:

UPDATE item_overviews SET trashed=1 WHERE uuid="<noted_UUID>";

Finally, it can be observed that the according key is no longer active.

Change Account Display Name
As a preparation, please add two accounts with different names, <Account_A> and <Account_B>, to
the OP application. Then, please enable biometric unlock and sign in to <Account_A> with the CLI 
tools. Now, please follow the general procedure and list the account database entries with the 
command:
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SELECT * FROM accounts;

Please, note the id in the first column and copy the JSON payload in the third column of the entry 
for <Account_A>. Then, please change the team_name JSON field value to that of the entry for 
<Account_B> and afterwards encode the new payload using the following Python script:

import binascii

binascii.hexlify(b'<the_payload>')

Afterwards, please update the database entry using:

UPDATE accounts SET data=x'<hex_payload>' WHERE id=<noted_id>;

After unlocking, please run the CLI command op item list and observe that a system 
authentication prompt with the account name of <Account_B> is shown. On approval, items of 
<Account_A> will become accessible.

Change Account Sign In URL
Considering the above reproduction steps for changing the account's display name, one can instead 
modify the account's sign_in_url JSON field. Here, please set the URL http://127.0.0.1. Now
listen to port 80 on localhost, e.g. using netcat:

root:~$ nc -l 80

Now, please proceed with unlocking and running the CLI item query. It can be noted that an 
incoming connection is shown on port 80. Various other errors will be shown during the use of the 
account due to later connection attempts to the modified sign in URL.
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5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations 
regarding the analyzed system in the following subsections.

5.1 SSH Key Title Uniqueness
In the context of the OP SSH agent, the title is the only information available to a user to identify 
requests to a specific key during the approval process. Accordingly, the displayed title is critical for 
the selection of the correct key. During the generation of key material inside the main application, it
was noted that keys with the same title can be created. This is possible even inside the same vault 
and is considered likely to happen, as part of the intended use of the application, when keys are 
stored in multiple vaults and even accounts.

Secfault Security would like to recommend prohibiting the creation of keys with the same title 
inside the same vault. In the approval prompt, the key title should be prefixed by the vault name, in 
case more than one local vault exists.

5.2 SSH Key Title Manipulations
Considering the relevance of key titles as outlined in the last subsection, another change to the 
current implementation was found to be advisable.

The documentation provided by Agilebits states that it is a known security issue that titles are stored
in the file system without additional integrity protection. As a result, an attacker with write access to
the specific location can modify the titles that will be displayed in the approval prompt, tricking the 
user to inadvertently allow access to specific keys.

Secfault Security would like to propose the following approach, that requires no additional 
cryptographic mechanisms: The SSH agent determines the target key by the public key information 
provided as part of the SSH_AGENTC_SIGN_REQUEST request by the SSH client. Now, a lookup in the
unencrypted parts of the database is performed to identify the key title, as the vaults might be 
locked at the moment of the request. This title is then shown in the authorization prompt. On the 
approval of the user, the vaults need to be unlocked to give access to the respective private key. 
Therefore, this time it is ensured that a protected version of the key title becomes available. 
Consequently, it is possible to check the protected key title against the title previously shown in the 
approval prompt before signing the requested data with the SSH private key. This way the attack is 
mitigated and modifications to the plain text key titles, and thus attacks on the user, can be detected.

Due to the simplicity of the described approach, it is not recommended to accept the risk of 
arbitrary manipulations to the plain text key titles.
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5.3 SSH Private Key Export
Unlike other common item types, such as passwords, that are supported by the 1Password solution, 
the use cases for an SSH key pair are considered limited. The public key part of the key pair is not a
secret, not requiring special protection with regard to its disclosure, is occasionally configured for 
long term use on some systems. The private key, on the other hand, is either not exported from the 
application at all, if it is only used via the offered SSH agent, or is also configured, even more 
infrequently than the public key, permanently for some clients.

On that account, it was found questionable that the private key can be exported in various ways 
from the OP client and Web UI. Its plain text can be copied via multiple GUI elements and in 
different formats to the OS clipboard and is stored in the file system. It is even included in the Web 
UI's print view:

Figure 1 - SSH Key Print View

The described application behavior has two security shortcomings: First of all, in consideration of 
the normally sporadic export of SSH private keys, the risk of disclosure due to accidental clicks on 
respective UI elements is considered too high. This is especially the case, as SSH key pairs are 
intended to be reused for multiple purpose, which is uncommon for other credential types. Further, 
it is not regarded security best practice to export SSH keys in plain text. Instead, keys should be 
exported in a wrapped format by default, e.g using PKCS#8 with key encryption based on most 
recent cryptographic algorithms.
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The introduction of a default key wrapping routine involves the implementation of a user prompt 
that allows to select or generate some passphrase. The same prompt could be used to allow a user to
export the key in plain text at their own risk. This change would therefore address both 
shortcomings, as keys are unlikely to be disclosed accidentally in a multi step process.

5.4 Prompt for Unknown SSH Key
During testing it was observed that the SSH agent will show an approval prompt even if the key 
specified in the SSH_AGENTC_SIGN_REQUEST request is not known. As there is obviously no key title
present for it, the SHA256 fingerprint will be shown in the prompt instead:

Figure 2 - Prompt for Unknown SSH Public Key

The following message gets logged on approving the key access with successful system 
authentication:

INFO  2022-02-23T10:37:32.093 tokio-runtime-worker(ThreadId(1)) [1P:ssh/op-ssh-

Secfault Security Confidential Page 28 of 34



Chapter 5 

agent/src/lib.rs:299] Session was not authorized

The described behavior could be used by an attacker to confuse the user, which might increase the 
chance of tricking them to perform more serious actions.
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6 Customer Feedback
After receiving a draft version of this document, Agilebits reviewed the identified issues and 
provided feedback, describing their assessment. In order to provide full transparency, this feedback 
is included in the below sections.

6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)
We've accepted this finding as a best practice issue. Version 2.0.1 of the 1Password CLI uses a more
robust method to parse the environment.

6.2 Output of Escape Sequences (Finding 4.1.2)
We've accepted this finding as a low severity issue. When used in a TTY, version 2.0.1 of the 
1Password CLI by default no longer outputs terminal escape sequences such that they are 
interpreted by the outputting terminal.

6.3 Race Condition in File Creation (Finding 4.1.3)
We've accepted this finding as a low severity issue. Version 2.0.1 of the 1Password CLI has 
improved file creation logic to avoid this bug.

6.4 Access to Parent Environment in op run (Finding 4.1.4)
We've investigated this finding and noted that our attempt to filter out CLI specific environment 
variables was ineffective and set the wrong expectations. As a result, version 2.0.1 of the 1Password
CLI no longer attempts to filter out the parent environment.

6.5 Missing Privilege Dropping in op run (Finding 4.1.5)
Secfault Security notified us during the test of this issue, and we addressed it promptly. It was 
addressed in the release of version 2.0.0 of the 1Password CLI, the first release of the op run 
command.

6.6 Secret Data in Command Arguments (Finding 4.1.6)
We've accepted this finding as a best practice issue. Version 2.0.1 of the 1Password CLI requires 
explicitly setting a flag to provide the secret key on the CLI directly, in addition to the default 
method that prompts for it.
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6.7 ToCToU Weakness in Windows Peer Verification (Finding 
4.1.7)

Secfault Security notified us during the test of this issue, and we addressed it promptly. It was 
addressed in the release of 1Password for Windows 8.6.0, the first release of the SSH agent.

6.8 Insufficient Peer Verification on Unix Sockets (Finding 
4.2.1)

Secfault Security notified us during the test of this issue, and we addressed it promptly. It was 
addressed in the release of 1Password for Linux 8.6.0, the first release of the SSH agent.

6.9 Unauthenticated Meta Information in Database (Finding 
4.2.2)

We've reviewed this issue and can’t accept most of the described findings as valid issues under the 
threat considerations described in the 1Password Security Whitepaper. However, we are looking to 
improve some hardening of 1Password configuration data in the future.
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7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each 
finding is rated by its type and its exploitability/impact of a successful exploitation. The meaning of
the individual ratings are provided in the following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description
Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Exploitability and Impact
The exploitability of a vulnerability describes the required skill level of an attacker as well as the 
required resources. Therefore, it provides an indication of the likelihood of exploitation.

Exploitability Rating Description
Not Exploitable This finding can most likely not be exploited.

Minimal Although an attack is theoretically possible, it is extremely unlikely that 
an attacker will exploit the identified vulnerability.

Low Exploiting the vulnerability requires the skill-level of an expert. An 
attack is possible, but difficult pre-conditions (e.g., prior identification 
and exploitation of other vulnerabilities) exist or the attack requires 
resources not available to the general public (e.g., expensive equipment). 
Successful exploitation indicates a dedicated, targeted attack.

Medium The vulnerability can be exploited under certain pre-conditions (e.g., user
interaction or prior authentication). Non-targeted, random attacks are 
possible for attackers with a medium skill level who perform such attacks
on a regular basis.

High The vulnerability can be exploited immediately without special pre-
conditions, by random attackers or in an automated fashion. Only general
knowledge about vulnerability exploitation is required.

The following table describes the impact rating used in this document.

Impact Rating Description
Critical The vulnerability is a systematic error or it permits compromising the system 

completely and beyond the scope of the assessment.
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Impact Rating Description
High The vulnerability permits compromising the systems within the scope 

completely.

Medium The vulnerability exceeds certain security rules, but does not lead to a full 
compromise (e.g., Denial of Service attacks)

Low The vulnerability has no direct security consequences but provides information 
which can be used for subsequent attacks.

Informational The observed finding does not have any direct security consequence; however, 
addressing the finding can lead to an increase in security or quality of the system
in scope.

When rating the impact of a vulnerability, the rating is always performed based on the scope of the 
analysis. For example, a vulnerability with high impact typically allows an attacker to fully 
compromise one or all of the core security guarantees of the components in scope. Identical 
vulnerabilities can therefore be rated differently in different projects.
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8 Glossary

Term Definition
API Application Programming Interface

CLI Command Line Interface

GUI Graphical User Interface

JSON JavaScript Object Notation

OS Operating System

PoC Proof-of-Concept

SQL Structured Query Language

SSH Secure Shell

URL Uniform Resource Locator

UUID Universally Unique Identifier
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