
Secfault SecuritySecfault Security

OP Security Assessment

Security Assessment

Report

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 AgileBits

- hereafter called "Agilebits" -

This document contains proprietary and confidential information of Secfault Security and the recipient. Publication or distribution
without prior written permission is forbidden.

Secfault Security

Chapter

Document History

Version Author Date Comment
0.1 Jennifer Gehrke 2022-02-23 First Draft

0.2 Gregor Kopf 2022-03-01 Additions and Corrections

0.3 Maik Münch 2022-03-03 Internal Review

0.4 Dirk Breiden 2022-03-03 Customer Version

0.5 Gregor Kopf 2022-03-16 Included Customer Feedback

0.6 Gregor Kopf 2022-04-04 Included Additional Customer Feedback

0.7 Gregor Kopf 2022-04-08 Minor Changes in Customer Feedback

1.0 Gregor Kopf 2022-04-27 Final Version

Secfault Security Confidential Page 2 of 34

Chapter

Table of Contents
1 Executive Summary..4
2 Overview..5

2.1 Target Scope..5
2.2 Test Procedures...5
2.3 Project Execution..5

3 Result Overview...7
4 Results..8

4.1 CLI Tools..8
4.1.1 Lax Parsing for Dotenv Files..8
4.1.2 Output of Escape Sequences...10
4.1.3 Race Condition in File Creation..12
4.1.4 Access to Parent Environment in op run...15
4.1.5 Missing Privilege Dropping in op run...17
4.1.6 Secret Data in Command Arguments..18
4.1.7 ToCToU Weakness in Windows Peer Verification..19

4.2 SSH Agent...20
4.2.1 Insufficient Peer Verification on Unix Sockets...20
4.2.2 Unauthenticated Meta Information in Database...23

5 Additional Observations...26
5.1 SSH Key Title Uniqueness...26
5.2 SSH Key Title Manipulations...26
5.3 SSH Private Key Export...27
5.4 Prompt for Unknown SSH Key..28

6 Customer Feedback..30
6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)...30
6.2 Output of Escape Sequences (Finding 4.1.2)..30
6.3 Race Condition in File Creation (Finding 4.1.3)..30
6.4 Access to Parent Environment in op run (Finding 4.1.4)..30
6.5 Missing Privilege Dropping in op run (Finding 4.1.5)...30
6.6 Secret Data in Command Arguments (Finding 4.1.6)...30
6.7 ToCToU Weakness in Windows Peer Verification (Finding 4.1.7)...31
6.8 Insufficient Peer Verification on Unix Sockets (Finding 4.2.1)..31
6.9 Unauthenticated Meta Information in Database (Finding 4.2.2)..31

7 Vulnerability Rating...32
7.1 Vulnerability Types...32
7.2 Exploitability and Impact..32

8 Glossary..34

Secfault Security Confidential Page 3 of 34

Chapter 1

1 Executive Summary
Secfault Security was tasked by Agilebits with a security review of selected components of the
1Password ecosystem, namely the CLI integration and the SSH agent functionality. The review has
been performed in the time frame from 2022-02-14 to 2022-03-01. This document describes the
results of the project.

During the review a number of issues, which are described in detail in section 4 of this document,
have been identified. One of the more severe issues might allow sufficiently-privileged local
attackers to trick the user into granting SSH agent authorization for malicious processes. Other
issues include problems with the way the CLI handles the execution of external commands, which
could result in malicious processes started by the CLI being able to obtain access to the user's
1Password session. Additionally, a number of minor problems have been identified, including for
instance the insecure handling of terminal escape sequences or the use of lax parsers.

Section 5 of this document provides a number of additional observations and recommendations.
This includes an approach for addressing the known security issue concerning the manipulation of
SSH key titles as shown in the approval prompt.

Overall, the reviewed codebase left a positive impression. The code is well-structured and readable
and has been implemented with security in mind.

After having received a draft version of this document, Agilebits provided feedback on the
identified issues, which can be found in section 6 of this document.

Secfault Security Confidential Page 4 of 34

Chapter 2

2 Overview
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store various passwords, software licenses, and other
sensitive information in virtual vaults.

Agilebits tasked Secfault Security with a review of selected parts of the CLI implementation and the
SSH integration of the solution.

In section 2.1 of this document, a description of the project's scope is provided. Section 2.2 provides
details on the test procedures.

2.1 Target Scope
The following source code repositories have been provided by Agilebits for review:

• op at revision 7398e6be5c4d359ecb2d52a5116c2b66d7ccad9f

• core at revision 22e7c45a8cffbbaf79be1510cfe24b955c1421a9

Furthermore, Agilebits provided the respective binaries for the above mentioned revisions.

2.2 Test Procedures
The overall project followed a white-box approach, which means that Agilebits provided the source
code, the compiled binaries and technical documentation for the solution. Therefore, the solution
has been analyzed by performing a source code review, as well as targeted dynamic testing.

The source code review has been performed in a manual fashion, i.e., without relying on automated
vulnerability scanners or similar tools. Besides identifying possible classical implementation
weaknesses, one main focus of the review was the identification of potential logic problems. This
requires an in-depth understanding of the solution's inner workings, which is best achieved by a
manual process.

The dynamic tests have been performed in a targeted fashion. On the one hand, this served the
purpose of validating issues identified during the source code review. On the other hand, dynamic
tests were also performed to obtain a better understanding of the overall solution and the interplay
of its individual components.

2.3 Project Execution
The project has been executed in the time frame from 2022-02-14 to 2022-03-01 in 15 person days.

The consultants assigned to this projects were:

• Maik Münch

Secfault Security Confidential Page 5 of 34

Chapter 2

• Jennifer Gehrke

• Gregor Kopf

Secfault Security Confidential Page 6 of 34

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Exploitability Attack Impact
Lax Parsing for Dotenv Files 4.1.1 Code Medium Medium

Output of Escape Sequences 4.1.2 Code Low-Medium Medium

Race Condition in File Creation 4.1.3 Code Low-Medium Medium

Access to Parent Environment in op run 4.1.4 Code Medium High

Missing Privilege Dropping in op run 4.1.5 Code Medium High

Secret Data in Command Arguments 4.1.6 Code Low-Medium Medium

ToCToU Weakness in Windows Peer
Verification

4.1.7 Code Medium High

Insufficient Peer Verification on Unix
Sockets

4.2.1 Design Medium High

Unauthenticated Meta Information in
Database

4.2.2 Design Medium Medium

Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Confidential Page 7 of 34

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 CLI Tools

4.1.1 Lax Parsing for Dotenv Files
Summary

Type Location Exploitability Attack Impact
Code godotenv (third-party

dependency)
Medium Medium

Technical Description

While reviewing the dotenv file parsing of the op inject command, it was found that the used
parser implementation is rather lax. A cursory inspection of the parser code1 revealed that - for
instance - the handling of comments does not appear to properly address situations where multiple
quotes occur in a nested fashion:

func parseLine(line string, envMap map[string]string) (key string, value
string, err error) {

if len(line) == 0 {
err = errors.New("zero length string")
return

}

// ditch the comments (but keep quoted hashes)
if strings.Contains(line, "#") {

segmentsBetweenHashes := strings.Split(line, "#")
quotesAreOpen := false
var segmentsToKeep []string
for _, segment := range segmentsBetweenHashes {

if strings.Count(segment, "\"") == 1 || strings.Count(segment,
"'") == 1 {

if quotesAreOpen {
quotesAreOpen = false
segmentsToKeep = append(segmentsToKeep, segment)

} else {

1 https://github.com/joho/godotenv/blob/c40e9c6392b05ba58e6fea50091ce35a1ef020e7/godotenv.go#L100

Secfault Security Confidential Page 8 of 34

Chapter 4

quotesAreOpen = true
}

}

if len(segmentsToKeep) == 0 || quotesAreOpen {
segmentsToKeep = append(segmentsToKeep, segment)

}
}

line = strings.Join(segmentsToKeep, "#")
}

It can be observed that the code would treat a string like "'" # foo as one actual literal - contrary
to what one might expect.

An attacker with the ability to create dotenv files might abuse this behaviour in order to craft
seemingly benign dotenv files, which would inadvertently leak secret information into unrelated
environment variables.

It should be noted that no in-depth review of the parser implementation has been performed and that
the presence of other issues can hence not be ruled out.

Recommended Action

In order to address this issue, a first step could be to perform a more in-depth review of the used
dotenv parser in order to identify further possible issues. All identified problems should
subsequently be reported upstream in order to be addressed by the developers of the library.

Reproduction Steps

In order to reproduce this issue, please install godotenv and create a dotenv file /tmp/test.env
with the following contents:

PASSWORD=super secret
USERNAME='as908dzf/"' # Has to be quoted, because we hard-code it. When using
variable references like $PASSWORD, this is not needed

Then, please use a command as shown below to observe the behaviour of the parser:

 go/bin/godotenv -f /tmp/test.env env𝝺
USERNAME='as908dzf/"' # Has to be quoted, because we hard-code it. When using
variable references like super secret, this is not needed
PASSWORD=super secret

It can be observed that the USERNAME variable - contrary to what one might expect - not only
contains the full comment, but also exposes the contents of the PASSSWORD variable within this
comment.

Secfault Security Confidential Page 9 of 34

Chapter 4

4.1.2 Output of Escape Sequences
Summary

Type Location Exploitability Attack Impact
Code CLI Tools Low-Medium Medium

Technical Description

While reviewing the implementation of the CLI tools, it was found that the op tool generally does
not filter terminal escape sequences when writing data to stdout. An attacker with the ability to
control (parts of) the tool's output could therefore inject malicious escape sequences.

Depending on the used terminal emulator, this can lead to a number of possible issues. Historically,
there have been code execution vulnerabilities in a number of terminal emulators, such as xterm or
more recently in xterm.js2.

However, even without such issues, outputting untrusted escape sequences can result in potential
problems. Attackers could for instance use escape sequences in order to display misleading
information to the user. One obvious example of such misleading information could be fake
password prompts, aiming to trick the user into entering sensitive passwords into their command
shell.

Recommended Action

In order to address this issue, it is recommended to filter terminal escape sequences when the op
tool interacts with a tty.

Reproduction Steps

In order to demonstrate the presence of the problem, the following Python script can be used to
generate a file named poc.json, which contains a sequence of terminal escape sequences aiming to
trick a user into entering their password:

import sys

with open('poc.json', 'w') as f:
 f.write(u"\u001b[?25l\u001b[2J\u001b[1;1HPlease enter your password:")
 for i in range(1000000):
 f.write(u"{}\u001b[50D".format(' '*50))

The file poc.json can subsequently be added to a vault as shown below:

$ op document create poc.json

2 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-0542

Secfault Security Confidential Page 10 of 34

Chapter 4

After adding the file, the target user could be tricked into displaying the file:

$ op document get poc.json

The escape sequences in the above PoC code will display a password prompt, which could make the
user assume they are still interacting with the op tool - while in reality, they would enter their
password into their command shell, which in turn might for instance save it in the history file.

Secfault Security Confidential Page 11 of 34

Chapter 4

4.1.3 Race Condition in File Creation
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/opio/

file.go
Low-Medium Medium

Technical Description

The CLI tools offer a number of ways for creating files. For instance, the op inject command can
be used to parse template files, fill in secret information and create new files. While reviewing the
file creation logic in op-cli/command/opio/file.go, it was identified that the implementation of
CreateFile contains a number of possible race conditions. Further, it also does not appear to
properly consider symbolic links.

Please consider the below excerpt from the code:

func CreateFile(name string, fileMode os.FileMode, io Stdinout, force bool)
(io.WriteCloser, error) {
 var file *os.File
 _, err := os.OpenFile(name, os.O_WRONLY, fileMode)
 if err == nil {
 // Return error when in pipe
 if io.IsOutputPiped() && !force {
 return nil, fmt.Errorf("file %s already exists", name)
 }

 if !force {
 prompt := fmt.Sprintf("File %s already exists, overwrite it? [Y/n] ",
name)
 if ok, _ := input.ProcessYesNoReturnPromptRW(prompt, io.TTYOrStdin(),
os.Stderr); !ok {
 fmt.Println("Aborting.")
 return nil, ErrAborted
 }
 }
 // This is necessary in order to wipe the contents of the previously
existing file.
 file, err = os.Create(name)
 if err != nil {
 return nil, fmt.Errorf("could not overwrite file %s: %s", name, err)
 }

 } else if os.IsNotExist(err) {
 file, err = os.Create(name)

Secfault Security Confidential Page 12 of 34

Chapter 4

 if err != nil {
 return nil, fmt.Errorf("could not create file %s: %s", name, err)
 }
 } else {
 return nil, fmt.Errorf("could not open file %s: %s", name, err)
 }

 err = file.Chmod(fileMode)
 if err != nil {
 return nil, fmt.Errorf("could not set permissions on file at %s: %s",
name, err)
 }
 return file, nil

It can be observed that the code first checks if the target file already exists. If it exists, it prompts
the user whether to overwrite the existing file. Subsequently, it clears the file's contents and changes
the file permissions. It should be noted that these operations are not performed in an atomic manner.
For instance, the target file could be created just after the code checks for its existence.
Furthermore, if the target file is a symbolic link, the code could write files to unintended locations.
Depending on the respective environment, this might turn into an exploitable condition.

One obvious example of such an exploitable condition leverages the missing check for a symbolic
link: Assume that a legitimate user Alice uses the op inject command to create a file named
/tmp/foo. The attacker, Bob, knows about this and creates a symbolic link /tmp/foo beforehand.
The symbolic link points to Alice's ~/.bashrc or a similar sensitive configuration file. Alice now
runs the op inject command. As the target of the symbolic link already exists, the code will
prompt her to overwrite the file /tmp/foo. She confirms this prompt and thereby accidentally
overwrites her ~/.bashrc.

In order to improve the attack, Bob might attempt to create the symbolic link /tmp/foo directly
after the code checked for the file's presence. In this case, no prompt would be shown to Alice.

It should be noted that the above example relies on the fs.protected_symlinkssysctl variable
being set to zero. However, on the one hand the value of this variable is not under the control of the
analyzed codebase. On the other hand, more involved attacks, which do not rely on
fs.protected_symlinks being set to zero, cannot fully be ruled out.

Recommended Action

In order to address this issue, the following approach for creating a file is recommended:

 1 Attempt to open the file using the O_CREAT|O_EXCL|O_NOFOLLOW flags, while directly passing
the desired file permissions as well

 2 When the result of the above operation is EEXIST, prompt the user to overwrite the file. In case
of ELOOP, inform the user about the fact that a symbolic link has been detected and abort the

Secfault Security Confidential Page 13 of 34

Chapter 4

process

 3 If the user confirms, unlink the file and re-start the process at step 1

Reproduction Steps

This finding has been identified in a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps are provided.

Secfault Security Confidential Page 14 of 34

Chapter 4

4.1.4 Access to Parent Environment in op run
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/run.go Medium High

Technical Description

The op run command allows users to start processes, passing secrets stored in 1Password via
environment variables. In order to prevent the started process from directly interacting with the
running OP8 instance, the code removes a number of sensitive environment variables prior to
executing the child process.

However, it should be noted that the started child process could still be able to obtain such
environment variables from its parent process by reading /proc/<ppid>/environ. This could
allow malicious child processes to interact with the running OP8 instance.

Recommended Action

In order to address this issue, the PR_SET_DUMPABLE attribute of prctl could be used to make the
op process inaccessible by its child processes.

Reproduction Steps

In order to reproduce this issue, please use the following Python script:

#!/usr/bin/env python3

import os

print("My environment:")
for e in os.environ:
 if 'OP_SESSION' in e: print(e)

stat = open("/proc/self/stat").read()
ppid = stat.split(" ")[3]
print("ppid = " + ppid)

penv = open("/proc/" + ppid + "/environ").read()
entries = penv.split('\0')
print("Parent's environment:")
for e in entries:
 if 'OP_SESSION' in e: print(e)

When started with op run, the script should first display the environment variables it can directly
access. Please note that the OP_SESSION variable is not set. However, by reading the environment of

Secfault Security Confidential Page 15 of 34

Chapter 4

its parent process, the script can still access the contents of the OP_SESSION variable, as the below
excerpt illustrates:

 op run python poc.py𝝺
My environment:
GNOME_DESKTOP_SESSION_ID
DESKTOP_SESSION
ppid = 2740520
Parent's environment:
DESKTOP_SESSION=regolith
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
OP_SESSION_secfaulttest1=nveh5yNn4NzHQLbPrVm6vQOQf-ch8o0ZoND_GOGPzk8

Secfault Security Confidential Page 16 of 34

Chapter 4

4.1.5 Missing Privilege Dropping in op run
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/run.go Medium High

Technical Description

While reviewing the implementation of the op run command, it was found that the op tool does not
drop its privileges prior to executing its child process. For enabling the new "Biometric Unlock"
feature on Linux, the op binary belongs to the group onepassword-cli and has the setgid flag set.
This means that the binary will have its group set to onepassword-cli even if it is started by a user
who is not a member of this group. This mechanism serves the purpose of being able to identify the
binary when it communicates with OP8 via a Unix socket.

The fact that the op binary does not drop its privileges however means that processes started by op
run will also have the group onepassword-cli, which could enable them to directly interact with
the running OP8 instance via its Unix socket.

Recommended Action

During the execution of the project, the issue was communicated to Agilebits, who stated that the
issue has already been addressed by dropping privileges in the op process.

Reproduction Steps

In order to demonstrate the presence of this issue, the following command can be used:

op run -- id -g --name

The output of the id command started via op run indicates, that the child process indeed belongs to
the onepassword-cli group.

Secfault Security Confidential Page 17 of 34

Chapter 4

4.1.6 Secret Data in Command Arguments
Summary

Type Location Exploitability Attack Impact
Code op-cli/command/

signin.go
Low-Medium Medium

Technical Description

While reviewing the implementation of the op CLI tool, it was found that the op signin command
accepts possibly sensitive information via command line arguments. The syntax for invoking the
command is signin [<sign_in_address> [<email_address> [<secret_key>]]], which
indicates that the secret_key for a user account could be provided on the CLI. This might leak the
secret key info the user's shell history, as well as in the system's process list (e.g., accessible via the
ps command).

Recommended Action

In order to address this issue, it is recommended to at least inform users about the potential risks of
passing data as command arguments. If using command arguments is required for convenience, it
could be advisable to process such arguments only if a specific flag (such as --insecure) has been
provided.

Reproduction Steps

In order to reproduce the issue, please use the op signin command, providing the secret_key as a
parameter. Then, please inspect the process list of the system, as well as the respective user's shell
history file.

Secfault Security Confidential Page 18 of 34

Chapter 4

4.1.7 ToCToU Weakness in Windows Peer Verification
Summary

Type Location Exploitability Attack Impact
Code CLI Tools Medium High

Technical Description

The Windows CLI tools connecting to a named pipe to communicate to the main application are
verified based on Authenticode signatures. The signature of the executable is checked and its issuer
is ensured to belong to AgileBits. This procedure consists of multiple steps:

 1 First, the PID of the connecting process is determined using the API function
GetNamedPipeClientProcessId

 2 The execution path of the process is requested by a call to QueryFullProcessImageNameW

 3 The file at the execution path is opened

 4 The execution path is provided as input to WinVerifyTrust to perform the Authenticode
verification

 5 The subject of the signature issuer, as retrieved from the trust store, is checked to belong to
AgileBits

As known to Agilebits this validation steps might be affected by Time-of-check-to-time-of-use
(ToCToU) problems. For this reason, step 3 was implemented. It should lock the respective file, to
prevent it from being renamed and overwritten before it is read as part of step 4 and 5. This should
rule out that an attacker performs a connection with a malicious binary "A" and renames the CLI
tools binary to binary "A" (and binary "A" to something else) directly after step 2. Thereby, the
legitimate binary would be used in step 4 and 5 although it is not the actual executable.

The implementation of this approach, however, suffers from an implementation issue. It should be
noted here, that this perception was gained by a static code review and was not confirmed
dynamically.

The issue arises from the selection of the function std::fs::File::open3 for acquiring a file lock.
An inspection of its source code4 showed the internal utilization of std::fs::OpenOptions::open:

pub fn open<P: AsRef<Path>>(path: P) -> io::Result<File> {
 OpenOptions::new().read(true).open(path.as_ref())
}

A further cursory inspection of the documentation for the Windows std::fs::OpenOptions

3 https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.open
4 https://doc.rust-lang.org/stable/src/std/fs.rs.html#327-329

Secfault Security Confidential Page 19 of 34

Chapter 4

extension revealed the default sharing mode5 requested for the file:

By default share_mode is set to FILE_SHARE_READ | FILE_SHARE_WRITE |
FILE_SHARE_DELETE. This allows other processes to read, write, and delete/rename
the same file while it is open. Removing any of the flags will prevent other processes
from performing the corresponding operation until the file handle is closed.

As the implementation of std::fs::File::open does not explicitly use the function
std::os::windows::fs::OpenOptionsExt::share_mode to clear all flags (note the example in
the documentation6), it is expected to utilize the mentioned defaults. As a result, it should still be
possible to rename and overwrite the file after step 3.

On a successful attack, the connection of an attacker-controlled binary would be accepted by the
named pipe to make requests on behalf of the CLI tools.

Recommended Action

Generally, a more in-depth analysis of the situation is recommended. The missing file locking
should be added by using appropriate open flags on the Windows platform.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

4.2 SSH Agent

4.2.1 Insufficient Peer Verification on Unix Sockets
Summary

Type Location Exploitability Attack Impact
Design ssh/op-ssh-agent/src/

lib.rs
Medium High

Technical Description

While reviewing the SSH agent socket communication, it was found that on Unix systems, when
receiving a new incoming message to the SSH Agent socket, the peer process is determined based
on its PID. Please consider the following excerpt from ssh/op-ssh-agent/src/lib.rs:

op_log::debug!("connection received");
let callback = shared_callback.clone();
let authorized_sessions = shared_authorized_sessions.clone();

5 https://doc.rust-lang.org/stable/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode
6 https://doc.rust-lang.org/stable/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode

Secfault Security Confidential Page 20 of 34

Chapter 4

let handler = tokio::time::timeout(Duration::from_secs(30), async move {
 while let Some(msg_event) = incoming.next().await {
 let message = match msg_event {
 Ok(msg) => msg,
 Err(e) => {
 // If we can't get a message, then we can't do anything else
for this
 // specific connection.
 op_log::warn!(
 "failed to receive agent request({}), dropping client",
 e
);
 break;
 }
 };

 let sock_pid = incoming.pid();

The pid function is implemented inside op-ipc/src/ipc/unix.rs and utilizes the peer_cred
function offered by the tokio::net::UnixStream struct:

pub fn pid(&self) -> Option<u32> {
 let peer_creds = self.0.get_ref().peer_cred().log_err().ok()?;
 let pid = peer_creds.pid()?;
 pid.try_into().ok()
}

The documentation states that this "Returns effective credentials of the process which called
connect or socketpair"7. However, sockets can be shared with other processes by sending the
respective file descriptor via a Unix socket. As already hinted by the documentation, a socket
message must therefore not originate from the process that initially established the connection. This
can lead to a wrong PID value and thereby to wrong process information lookups during the
approval process.

As part of the assessment it was analysed whether this behavior can be misused by an attacker to
reuse the key approval given for another process. The core problem in the reviewed implementation
is the assumption that the process establishing the socket connection still needs to be running. This
is however not necessarily the case, as a transferred socket remains usable even after termination of
the process that originally opened the file descriptor. As a result, it is possible to store the socket for
a certain time in a second attacker-controlled process and wait for an approved process to run with
the same PID as the process that originally opened the connection. Since any generation of the
op_sys_info::ProcessInformation for this PID will now utilize the information for the
legitimate process, the socket connection will automatically be approved by the agent's session
when sending signature requests.

7 https://docs.rs/tokio/0.1.12/tokio/net/struct.UnixStream.html#method.peer_cred

Secfault Security Confidential Page 21 of 34

Chapter 4

The approach was dynamically tested on a system with a reduced maximal number of PIDs and
ensuring the rapid reuse of the relevant PID, proving its general applicability. An attacker with
access to the SSH agent socket can thereby access keys that get approved for the attacked process.

Recommended Action

In order to address this issue, it is recommended to record the start time of the remote process, when
a socket connection is originally established. Once a message is sent to the socket, the start time of
the remote process should be checked again; if it does not match the recorded start time, the
connection should be aborted.

Reproduction Steps

The generated Proof-of-Concept consists of the following steps:

 1 Reduce the maximal number of PIDs for the system

 2 Start a main process listening on a Unix socket and storing incoming file descriptors

 3 Consume the majority of free PIDs with wait processes

 4 For the remaining free PIDs: Open processes connecting to the SSH agent socket and sending the
respective file descriptor to the main process.

 5 Terminate all processes used in step 4 once the system ran out of free PIDs

 6 Start a legit process performing a SSH connection with a key stored in OP (The process should
automatically get assigned one of the PIDs already used in step 4)

 7 Approve the access to the SSH key requested by the process of step 6

 8 Let the main process instantly use the stored file descriptor for the PID of the process of step 6
and request a signature using the key from step 7

The PoC implementation has been delivered to Agilebits separate from this report.

Secfault Security Confidential Page 22 of 34

Chapter 4

4.2.2 Unauthenticated Meta Information in Database
Summary

Type Location Exploitability Attack Impact
Design OP Core Medium Medium

Technical Description

While analyzing the mapping between the data shown in the approval prompts for the SSH agent or
CLI biometric unlock prompts and the actual secrets that become accessible, it was identified that
the OP database contains various kinds of unauthenticated metadata. This could allow an attacker
with access to the respective file system location to modify this data. While this problem is known
for the SSH agent key titles (please refer to section 5.2 for a potential solution to this), it seems to
be a more general issue.

Dynamic tests showed, for example, that the account name displayed throughout the client UI and
in the CLI biometric prompts can be changed as well as deleted items can be reactivated. Thereby,
users can be tricked to approve CLI access to items of unintended accounts and deleted credentials
get accessible without any user interaction.

Cursory tests hint that data that is not cryptographically protected locally, e.g. entries consisting of
JSON data blobs, can be modified and will become available latest during unlock. This concerns the
various plain text data entries, including row references defining the object's general context, but
might also be of relevance for the meta data attached to encrypted blobs. Whether any security
issues exist in the latter case was not analyzed, as it highly depends on the utilized cryptographic
implementations which are out-of-scope for the performed assessment.

The impact was rated to be medium, but only relates to the attack scenario of changing the account
display name and to the reactivation of items. The impact of this general issue can be considerably
higher depending on the type of data that can be altered.

Recommended Action

The ability to tamper data stored in the OP database should be assessed in more detail. It is
advisable to introduce a general routine for ensuring data authenticity or integrity. While it is
understood that some data needs to be available even before the user password is provided, the
majority of data is loaded on a successful unlock and should therefore be protected by default.
Unsecured data should be handled separately and may only be used for this specific use case and
when authentication routines or integrity checks cannot be applied.

One example for this is the account display name. It is already provided to the user before the first
unlock, but is also used as part of the GUI afterwards. In the second case, it is not necessary to read
its value without a previous integrity check. Further, similar to the mitigation proposed against

Secfault Security Confidential Page 23 of 34

Chapter 4

manipulations to the SSH key titles (see section 5.2, the account name can be checked on successful
biometric unlock against an authenticated value and be rejected in case of modifications.

It is further considered likely that only little exceptions exist that, similar to the account name for
the unlock screen, cannot be covered. Although Secfault Security has no full understanding of the
general cryptographic design, the current impression is that after the initial unlock of the OP
application, the user password or derived values remain accessible even when the account is locked.
In this case, it would be possible to utilize them to check the integrity of data even during this.
Before the initial unlock, secondary features such as SSH are not available anyway and do therefore
not require access user specific data.

In summary:

• Data should be authenticated by default.

• Only minimal exceptions should be defined explicitly.

• The integrity checks may only be omitted for this data and in cases where the cryptographic
material for performing the integrity checks is not available.

• Mitigations should be implemented to detect modifications as soon as possible, optimally before
disclosing sensitive data or elevating privileges (see the approach described in section 5.2).

Reproduction Steps

To reproduce this issue the following general procedure could be used:

First, please lock the OP application and run the following command to open the database:

sqlite3 ~/.config/1Password/1password.sqlite

Now, perform the according changes to the database and unlock the OP application to ensure that
the data gets reloaded.

Reactivation of Items
As a preparation, please note the UUID of an item using the feature "Copy item UUID". Now,
please follow the general procedure and execute the following SQL command for the noted UUID:

UPDATE item_overviews SET trashed=1 WHERE uuid="<noted_UUID>";

Finally, it can be observed that the according key is no longer active.

Change Account Display Name
As a preparation, please add two accounts with different names, <Account_A> and <Account_B>, to
the OP application. Then, please enable biometric unlock and sign in to <Account_A> with the CLI
tools. Now, please follow the general procedure and list the account database entries with the
command:

Secfault Security Confidential Page 24 of 34

Chapter 4

SELECT * FROM accounts;

Please, note the id in the first column and copy the JSON payload in the third column of the entry
for <Account_A>. Then, please change the team_name JSON field value to that of the entry for
<Account_B> and afterwards encode the new payload using the following Python script:

import binascii

binascii.hexlify(b'<the_payload>')

Afterwards, please update the database entry using:

UPDATE accounts SET data=x'<hex_payload>' WHERE id=<noted_id>;

After unlocking, please run the CLI command op item list and observe that a system
authentication prompt with the account name of <Account_B> is shown. On approval, items of
<Account_A> will become accessible.

Change Account Sign In URL
Considering the above reproduction steps for changing the account's display name, one can instead
modify the account's sign_in_url JSON field. Here, please set the URL http://127.0.0.1. Now
listen to port 80 on localhost, e.g. using netcat:

root:~$ nc -l 80

Now, please proceed with unlocking and running the CLI item query. It can be noted that an
incoming connection is shown on port 80. Various other errors will be shown during the use of the
account due to later connection attempts to the modified sign in URL.

Secfault Security Confidential Page 25 of 34

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 SSH Key Title Uniqueness
In the context of the OP SSH agent, the title is the only information available to a user to identify
requests to a specific key during the approval process. Accordingly, the displayed title is critical for
the selection of the correct key. During the generation of key material inside the main application, it
was noted that keys with the same title can be created. This is possible even inside the same vault
and is considered likely to happen, as part of the intended use of the application, when keys are
stored in multiple vaults and even accounts.

Secfault Security would like to recommend prohibiting the creation of keys with the same title
inside the same vault. In the approval prompt, the key title should be prefixed by the vault name, in
case more than one local vault exists.

5.2 SSH Key Title Manipulations
Considering the relevance of key titles as outlined in the last subsection, another change to the
current implementation was found to be advisable.

The documentation provided by Agilebits states that it is a known security issue that titles are stored
in the file system without additional integrity protection. As a result, an attacker with write access to
the specific location can modify the titles that will be displayed in the approval prompt, tricking the
user to inadvertently allow access to specific keys.

Secfault Security would like to propose the following approach, that requires no additional
cryptographic mechanisms: The SSH agent determines the target key by the public key information
provided as part of the SSH_AGENTC_SIGN_REQUEST request by the SSH client. Now, a lookup in the
unencrypted parts of the database is performed to identify the key title, as the vaults might be
locked at the moment of the request. This title is then shown in the authorization prompt. On the
approval of the user, the vaults need to be unlocked to give access to the respective private key.
Therefore, this time it is ensured that a protected version of the key title becomes available.
Consequently, it is possible to check the protected key title against the title previously shown in the
approval prompt before signing the requested data with the SSH private key. This way the attack is
mitigated and modifications to the plain text key titles, and thus attacks on the user, can be detected.

Due to the simplicity of the described approach, it is not recommended to accept the risk of
arbitrary manipulations to the plain text key titles.

Secfault Security Confidential Page 26 of 34

Chapter 5

5.3 SSH Private Key Export
Unlike other common item types, such as passwords, that are supported by the 1Password solution,
the use cases for an SSH key pair are considered limited. The public key part of the key pair is not a
secret, not requiring special protection with regard to its disclosure, is occasionally configured for
long term use on some systems. The private key, on the other hand, is either not exported from the
application at all, if it is only used via the offered SSH agent, or is also configured, even more
infrequently than the public key, permanently for some clients.

On that account, it was found questionable that the private key can be exported in various ways
from the OP client and Web UI. Its plain text can be copied via multiple GUI elements and in
different formats to the OS clipboard and is stored in the file system. It is even included in the Web
UI's print view:

Figure 1 - SSH Key Print View

The described application behavior has two security shortcomings: First of all, in consideration of
the normally sporadic export of SSH private keys, the risk of disclosure due to accidental clicks on
respective UI elements is considered too high. This is especially the case, as SSH key pairs are
intended to be reused for multiple purpose, which is uncommon for other credential types. Further,
it is not regarded security best practice to export SSH keys in plain text. Instead, keys should be
exported in a wrapped format by default, e.g using PKCS#8 with key encryption based on most
recent cryptographic algorithms.

Secfault Security Confidential Page 27 of 34

Chapter 5

The introduction of a default key wrapping routine involves the implementation of a user prompt
that allows to select or generate some passphrase. The same prompt could be used to allow a user to
export the key in plain text at their own risk. This change would therefore address both
shortcomings, as keys are unlikely to be disclosed accidentally in a multi step process.

5.4 Prompt for Unknown SSH Key
During testing it was observed that the SSH agent will show an approval prompt even if the key
specified in the SSH_AGENTC_SIGN_REQUEST request is not known. As there is obviously no key title
present for it, the SHA256 fingerprint will be shown in the prompt instead:

Figure 2 - Prompt for Unknown SSH Public Key

The following message gets logged on approving the key access with successful system
authentication:

INFO 2022-02-23T10:37:32.093 tokio-runtime-worker(ThreadId(1)) [1P:ssh/op-ssh-

Secfault Security Confidential Page 28 of 34

Chapter 5

agent/src/lib.rs:299] Session was not authorized

The described behavior could be used by an attacker to confuse the user, which might increase the
chance of tricking them to perform more serious actions.

Secfault Security Confidential Page 29 of 34

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits reviewed the identified issues and
provided feedback, describing their assessment. In order to provide full transparency, this feedback
is included in the below sections.

6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)
We've accepted this finding as a best practice issue. Version 2.0.1 of the 1Password CLI uses a more
robust method to parse the environment.

6.2 Output of Escape Sequences (Finding 4.1.2)
We've accepted this finding as a low severity issue. When used in a TTY, version 2.0.1 of the
1Password CLI by default no longer outputs terminal escape sequences such that they are
interpreted by the outputting terminal.

6.3 Race Condition in File Creation (Finding 4.1.3)
We've accepted this finding as a low severity issue. Version 2.0.1 of the 1Password CLI has
improved file creation logic to avoid this bug.

6.4 Access to Parent Environment in op run (Finding 4.1.4)
We've investigated this finding and noted that our attempt to filter out CLI specific environment
variables was ineffective and set the wrong expectations. As a result, version 2.0.1 of the 1Password
CLI no longer attempts to filter out the parent environment.

6.5 Missing Privilege Dropping in op run (Finding 4.1.5)
Secfault Security notified us during the test of this issue, and we addressed it promptly. It was
addressed in the release of version 2.0.0 of the 1Password CLI, the first release of the op run
command.

6.6 Secret Data in Command Arguments (Finding 4.1.6)
We've accepted this finding as a best practice issue. Version 2.0.1 of the 1Password CLI requires
explicitly setting a flag to provide the secret key on the CLI directly, in addition to the default
method that prompts for it.

Secfault Security Confidential Page 30 of 34

Chapter 6

6.7 ToCToU Weakness in Windows Peer Verification (Finding
4.1.7)

Secfault Security notified us during the test of this issue, and we addressed it promptly. It was
addressed in the release of 1Password for Windows 8.6.0, the first release of the SSH agent.

6.8 Insufficient Peer Verification on Unix Sockets (Finding
4.2.1)

Secfault Security notified us during the test of this issue, and we addressed it promptly. It was
addressed in the release of 1Password for Linux 8.6.0, the first release of the SSH agent.

6.9 Unauthenticated Meta Information in Database (Finding
4.2.2)

We've reviewed this issue and can’t accept most of the described findings as valid issues under the
threat considerations described in the 1Password Security Whitepaper. However, we are looking to
improve some hardening of 1Password configuration data in the future.

Secfault Security Confidential Page 31 of 34

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its exploitability/impact of a successful exploitation. The meaning of
the individual ratings are provided in the following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description
Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Exploitability and Impact
The exploitability of a vulnerability describes the required skill level of an attacker as well as the
required resources. Therefore, it provides an indication of the likelihood of exploitation.

Exploitability Rating Description
Not Exploitable This finding can most likely not be exploited.

Minimal Although an attack is theoretically possible, it is extremely unlikely that
an attacker will exploit the identified vulnerability.

Low Exploiting the vulnerability requires the skill-level of an expert. An
attack is possible, but difficult pre-conditions (e.g., prior identification
and exploitation of other vulnerabilities) exist or the attack requires
resources not available to the general public (e.g., expensive equipment).
Successful exploitation indicates a dedicated, targeted attack.

Medium The vulnerability can be exploited under certain pre-conditions (e.g., user
interaction or prior authentication). Non-targeted, random attacks are
possible for attackers with a medium skill level who perform such attacks
on a regular basis.

High The vulnerability can be exploited immediately without special pre-
conditions, by random attackers or in an automated fashion. Only general
knowledge about vulnerability exploitation is required.

The following table describes the impact rating used in this document.

Impact Rating Description
Critical The vulnerability is a systematic error or it permits compromising the system

completely and beyond the scope of the assessment.

Secfault Security Confidential Page 32 of 34

Chapter 7

Impact Rating Description
High The vulnerability permits compromising the systems within the scope

completely.

Medium The vulnerability exceeds certain security rules, but does not lead to a full
compromise (e.g., Denial of Service attacks)

Low The vulnerability has no direct security consequences but provides information
which can be used for subsequent attacks.

Informational The observed finding does not have any direct security consequence; however,
addressing the finding can lead to an increase in security or quality of the system
in scope.

When rating the impact of a vulnerability, the rating is always performed based on the scope of the
analysis. For example, a vulnerability with high impact typically allows an attacker to fully
compromise one or all of the core security guarantees of the components in scope. Identical
vulnerabilities can therefore be rated differently in different projects.

Secfault Security Confidential Page 33 of 34

Chapter 8

8 Glossary

Term Definition
API Application Programming Interface

CLI Command Line Interface

GUI Graphical User Interface

JSON JavaScript Object Notation

OS Operating System

PoC Proof-of-Concept

SQL Structured Query Language

SSH Secure Shell

URL Uniform Resource Locator

UUID Universally Unique Identifier

Secfault Security Confidential Page 34 of 34

	1 Executive Summary
	2 Overview
	2.1 Target Scope
	2.2 Test Procedures
	2.3 Project Execution

	3 Result Overview
	4 Results
	4.1 CLI Tools
	4.1.1 Lax Parsing for Dotenv Files
	4.1.2 Output of Escape Sequences
	4.1.3 Race Condition in File Creation
	4.1.4 Access to Parent Environment in op run
	4.1.5 Missing Privilege Dropping in op run
	4.1.6 Secret Data in Command Arguments
	4.1.7 ToCToU Weakness in Windows Peer Verification

	4.2 SSH Agent
	4.2.1 Insufficient Peer Verification on Unix Sockets
	4.2.2 Unauthenticated Meta Information in Database

	5 Additional Observations
	5.1 SSH Key Title Uniqueness
	5.2 SSH Key Title Manipulations
	5.3 SSH Private Key Export
	5.4 Prompt for Unknown SSH Key

	6 Customer Feedback
	6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)
	6.2 Output of Escape Sequences (Finding 4.1.2)
	6.3 Race Condition in File Creation (Finding 4.1.3)
	6.4 Access to Parent Environment in op run (Finding 4.1.4)
	6.5 Missing Privilege Dropping in op run (Finding 4.1.5)
	6.6 Secret Data in Command Arguments (Finding 4.1.6)
	6.7 ToCToU Weakness in Windows Peer Verification (Finding 4.1.7)
	6.8 Insufficient Peer Verification on Unix Sockets (Finding 4.2.1)
	6.9 Unauthenticated Meta Information in Database (Finding 4.2.2)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Exploitability and Impact

	8 Glossary

