
Secfault SecuritySecfault Security

1Password Mac Desktop App

Security Assessment

Report
FINAL

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 AgileBits

- hereafter called "Agilebits Inc dba 1Password" -

This document contains proprietary and confidential information of Secfault Security and the recipient. Publication or distribution
without prior written permission is forbidden.

Secfault Security

Chapter

Document History

Version Author Date Comment
0.1 Maik Münch 2022-04-13 Initial Draft Version

0.2 Gregor Kopf 2022-04-19 Additions

0.3 Dirk Breiden 2022-04-21 Internal Review

0.4 Gregor Kopf 2022-05-15 Included Customer Feedback

0.5 Dirk Breiden 2022-05-16 Internal Review

1.0 Gregor Kopf 2022-11-03 Final Version

Secfault Security Confidential Page 2 of 25

Chapter

Table of Contents
1 Executive Summary..4
2 Overview..5

2.1 Target Scope..5
2.2 Test Procedures...5
2.3 Project Execution..5

3 Result Overview...7
4 Results..8

4.1 Integrity Verification Bypass (Unpacked App)...8
4.2 Missing Quotes in Shell Command..11
4.3 Weak XPC Client Validation...13
4.4 Missing Focus Check in AutoType Implementation...15
4.5 Non-Atomic Verification Logic..17
4.6 Symlink Attack in Updater Implementation...18

5 Additional Observations...20
5.1 Missing Validation of Shell Command Input..20
5.2 Exposure of Unsafe Functions to Frontend Code...21
5.3 Use of PIDs for Security Checks..21

6 Customer Feedback..23
6.1 Integrity Verification Bypass (Unpacked App) (Finding 4.1)...23
6.2 Missing Quotes in Shell Command (Finding 4.2)..23
6.3 Weak XPC Client Validation (Finding 4.3)..23
6.4 Missing Focus Check in AutoType Implementation (Finding 4.4)..23
6.5 Non-Atomic Verification Logic (Finding 4.5)..23
6.6 Symlink Attack in Updater Implementation (Finding 4.6)...23

7 Vulnerability Rating...24
7.1 Vulnerability Types...24
7.2 Severity...24

8 Glossary..25

Secfault Security Confidential Page 3 of 25

Chapter 1

1 Executive Summary
Secfault Security was tasked by Agilebits Inc dba 1Password with a security review of selected
components of the 1Password ecosystem, namely the new macOS application offering the
"Universal Autofill" feature. The review has been performed in the time frame from 2022-04-04 to
2022-04-20. This document describes the results of the project.

During the review a number of issues, which are described in detail in section 4 of this document,
have been identified. The more severe issues include lax checks in the updater implementation,
which might be exploited by local attackers in order to elevate their privileges. Furthermore, issues
in the code integrity checking logic have been identified, which could allow local attackers to
perform modifications to the installed 1Password application. Other identified issues include weak
authorization checks for XPC services.

Section 5 of this document provides a number of additional observations and recommendations for
further strengthening the security aspects of the solution.

Overall, the reviewed codebase left a positive impression. The code is well-structured and readable
and a large number of common possible security issues have been avoided. This indicates that the
code has been implemented with security in mind.

After having received a draft version of this document, Agilebits Inc dba 1Password provided
feedback on the identified issues, which can be found in section 6 of this document.

Secfault Security Confidential Page 4 of 25

Chapter 2

2 Overview
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store various passwords, software licenses, and other
sensitive information in virtual vaults.

Agilebits Inc dba 1Password tasked Secfault Security with a review of the new macOS version of
the 1Password software, which includes a new feature called "Universal Autofill".

In section 2.1 of this document, a description of the project's scope is provided. Section 2.2 provides
details on the test procedures.

2.1 Target Scope
The following source code repositories have been provided by Agilebits Inc dba 1Password for
review:

• core at revision 5ab5ac

Furthermore, Agilebits Inc dba 1Password provided the respective binaries for the above mentioned
revision.

2.2 Test Procedures
The overall project followed a white-box approach, which means that Agilebits Inc dba 1Password
provided the source code, the compiled binaries and technical documentation for the solution.
Therefore, the solution has been analyzed by performing a source code review, as well as targeted
dynamic testing.

The source code review has been performed in a manual fashion, i.e., without relying on automated
vulnerability scanners or similar tools. Besides identifying possible classical implementation
weaknesses, one main focus of the review was the identification of potential logic problems. This
requires an in-depth understanding of the solution's inner workings, which is best achieved by a
manual process.

The dynamic tests have been performed in a targeted fashion. On the one hand, this served the
purpose of validating issues identified during the source code review. On the other hand, dynamic
tests were also performed to obtain a better understanding of the overall solution and the interplay
of its individual components.

2.3 Project Execution
The project has been executed in the time frame from 2022-04-04 to 2022-04-20 in 14 person days.

The consultants assigned to this projects were:

Secfault Security Confidential Page 5 of 25

Chapter 2

• Maik Münch

• Leonard König

• Gregor Kopf

Secfault Security Confidential Page 6 of 25

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Severity
Integrity Verification Bypass (Unpacked App) 4.1 Code Medium

Missing Quotes in Shell Command 4.2 Code Not Exploitable

Weak XPC Client Validation 4.3 Design Medium

Missing Focus Check in AutoType Implementation 4.4 Code Low

Non-Atomic Verification Logic 4.5 Design High

Symlink Attack in Updater Implementation 4.6 Code High
Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Confidential Page 7 of 25

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 Integrity Verification Bypass (Unpacked App)
Summary

Type Location Severity
Code ffi/core-node/src/

integrity_verification.rs
Medium

Technical Description

The 1Password application is built on top of the Electron framework. The implementation is
partially done in native code, which is loaded as a shared object; other parts of the code are
implemented in JavaScript. While the native code parts are signed using Apple's code signing
technology, the script files are compiled into an archive (app.asar), which itself is not signed.
Therefore, the code contains an integrity checking functionality, which aims to detect modifications
to the app.asar file.

The evaluation of this integrity verification revealed that only packaged applications are subject to
verification performed during load time of the core library.

The following excerpts from ffi/core-node/src/integrity_verification.rs illustrate that
resource integrity verification is only performed on packaged apps and how packed apps are
identified:

#[cfg(target_os = "macos")]
pub(crate) fn verify_asar_integrity(current_exe: &Path) -> Result<(), ()> {
 use op_crypto::blake3_unkeyed;

 // Unpackaged apps don't have ASAR archives.
 if !is_packaged(current_exe) {
 return Ok(());
 }
...
}
...
/// XXX: Should this be moved to `op-sys-info`?
#[cfg(target_os = "macos")]

Secfault Security Confidential Page 8 of 25

Chapter 4

#[inline]
pub(crate) fn is_packaged(current_exe: &Path) -> bool {
 // If the filename doesn't exist, somehow, then default to behaving like
the app is packaged.
 #[cfg(unix)]
 {
 current_exe
 .file_name()
 .map(|file_name| !file_name.eq_ignore_ascii_case("electron"))
 .unwrap_or(true)
 }

 #[cfg(windows)]
 {
 current_exe
 .file_name()
 .map(|file_name| !file_name.eq_ignore_ascii_case("electron.exe"))
 .unwrap_or(true)
 }
}

Please observe that if the current_exe is not considered to be packaged, integrity verification is
not performed. An application is considered to be unpacked if its lower-case file_name is equal to
electron respectively electron.exe.

By creating a hard link named electron to the 1Password executable and executing the hard link
instead of the original the integrity verification can be bypassed by a local attacker. This might
enable an attacker to manipulate the app.asar contents to execute arbitrary JavaScript code in the
context of the 1Password application circumventing potential mitigations.

Furthermore, this might allow malware to hide and persist malicious code.

Recommended Action

In order to mitigate this issue, it is advised to reconsider removing the "unpacked app" logic in
release builds. Please also be aware of the issue described in section 4.5 of this document, which
describes another issue in the integrity verification scheme and provides additional
recommendations and remarks.

Reproduction Steps

To reproduce this issue please execute the following steps:

 1 Start and exit the 1Password application

 2 In a terminal, please install the asar Node package by e.g., executing sudo npm install -g
--engine-strict asar

 3 Then, please execute the script below in a terminal using e.g., bash poc.sh

Secfault Security Confidential Page 9 of 25

Chapter 4

 4 Now, please observe that the console output indeed includes output generated by code inserted
into the main.js file of the app.asar archive.

The following shell script (poc.sh) bypasses integrity verification and inserts JavaScript code
executed on application startup and prints a message to the console.

cd /tmp
cp -r /Applications/1Password.app/Contents/Resources/app.asar* .
node /usr/local/lib/node_modules/asar/bin/asar.js extract app.asar
app.asar.unpacked
rm app.asar.unpacked/index.node
cp /Applications/1Password.app/Contents/Frameworks/index.node app.asar.unpacked
sed -i -e 's/setupMenu=()=>{if(!this/setupMenu=()=>{console.log("Hello from
main.js");if(!this/' app.asar.unpacked/main.js
node /usr/local/lib/node_modules/asar/bin/asar.js pack app.asar.unpacked
app.asar
cd -
cp /tmp/app.asar /Applications/1Password.app/Contents/Resources/
cd /Applications/1Password.app/Contents/MacOS
ln 1Password electron
./electron

Secfault Security Confidential Page 10 of 25

Chapter 4

4.2 Missing Quotes in Shell Command
Summary

Type Location Severity
Code core/apple/macOS/

FileManager+Authorization.swi
ft

Not Exploitable

Technical Description

The review of the update logic revealed an unquoted variable used in a shell command. The
following excerpt from the file apple/macOS/FileManager+Authorization.swift shows the
respective part of the code:

private func trashItemAtPathWithForcedAuthorization(at url: URL) -> Bool {
...
 let trashFolder =
self.homeDirectoryForCurrentUser.appendingPathComponent(".Trash")

 if self.fileExists(atPath: trashFolder.path) {
 self.setenvWithString("TRASH_FOLDER", trashFolder.path, 1)
 return runShellWithAuthorization("1Password needs to update some of its
files, which requires the password you use to log in to your Mac.", "/bin/mv -f
\"$FILE_PATH\" \"$TMP_PATH\" && /bin/mv \"$TMP_PATH\" $TRASH_FOLDER")
 }
 else { // can't find trash, delete old version instead
 ...
 }
}

The $TRASH_FOLDER variable in the executed shell command is, contrary to the other variables, not
quoted. Being user controlled to some degree, this might lead to issues such as command and
argument injection or problematic globbing.

Being able to control the $TRASH_FOLDER variable, an attacker might be able to execute commands
on behalf of the update process with elevated privileges ultimately leading to privilege escalation.
These elevated privileges might then be used to execute subsequent attacks against the user and
might help compromising 1Password's security posture.

It has to be noted that the affected function is currently not called within the code base and therefore
cannot be exploited. However, it cannot be excluded that this function will be used in future
iterations of the application and should therefore be addressed nonetheless.

Recommended Action

Secfault Security Confidential Page 11 of 25

Chapter 4

For the mitigation of this issue it is advised to quote the respective variables as a first step. Further,
it should be ensured that variables used in shell scripts do not contain shell meta characters such as
*, ?, ; and so on to avoid potential argument injection issues.

Ultimately, it should be avoided to rely on shell functionality whenever the same functionality could
be implemented by library functionality of the programming language in question. This might help
to eliminate multiple bug classes from emerging in the first place.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

Secfault Security Confidential Page 12 of 25

Chapter 4

4.3 Weak XPC Client Validation
Summary

Type Location Severity
Design XPC Server Medium

Technical Description

During analysis of the XPC client validation it was identified that clients are presumably validated
by their corresponding team identifier. If the team identifier of the client matches the one of the
XPC's binary, clients are able to communicate with the XPC server and presumably invoke methods
that might undermine the solutions security posture.

Please consider the following excerpt from
core/apple/CoreFoundation/CoreFoundation/ProcessValidation.swift:

public static func verifySignatureOfSelfMatchesSignature(of client: SecureCode)
-> Bool {
 func signingInformation(_ client: SecureCode) -> [String: Any]? {
 switch client {
 case .secCode(let client):
 return CodeSignature.signingInformation(of: client)
 case .secStaticCode(let staticClient):
 return CodeSignature.signingInformation(of: staticClient)
 }
 }

 guard Self.verifySignedWithAppleCert(client),
 let clientSigningInfo = signingInformation(client),
 let clientTeamIdentifier = clientSigningInfo[kSecCodeInfoTeamIdentifier as
String] as? String else {
 os_log(.debug, "Failed to grab code signature information about the
client.")
 return false
 }

 // Grab information from ourselves.
 guard let selfClient = CodeSignature.selfCodeSignature,
 let selfSigningInfo = CodeSignature.signingInformation(of: selfClient),
 let selfTeamIdentifier = selfSigningInfo[kSecCodeInfoTeamIdentifier as
String] as? String else {
 os_log(.debug, "Failed to grab code signature information about
ourselves.")
 return false
 }

Secfault Security Confidential Page 13 of 25

Chapter 4

 let isEqual = clientTeamIdentifier == selfTeamIdentifier
 os_log(.debug, "Code signature team id of client == ourselves: %{public}@",
String(describing: isEqual))
 return isEqual
}

The verifySignatureOfSelfMatchesSignature function simply compares the team identifier in
the code signatures of itself with the team identifier of the client. Please note that no version checks
are performed and such were not identified to be performed anywhere else in the code base during
static analysis.

While a local attacker cannot inject code into the newest versions of the 1Password application due
to application of the Hardened Runtime capability, they might be able identify older versions of
software with a matching team identifier that did not enable hardened runtime.

Due to the limited time budget and missing access to a software version which fulfills the
mentioned requirements no dynamic tests were performed to validate this issue.

Recommended Action

To address this issue it is recommended to authenticate connecting processes by their team and
bundle identifier and a minimum version should be enforced to ensure that mitigations such as the
hardened runtime have been enabled.

To further improve the implementation and to mitigate potential issues around PID wraparounds it
should be considered to validate the connecting processes' audit_token s.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

Secfault Security Confidential Page 14 of 25

Chapter 4

4.4 Missing Focus Check in AutoType Implementation
Summary

Type Location Severity
Code 1Password

Autofill/Brain/Brain.swift
Low

Technical Description

While reviewing the autofill implementation for macOS, it was found that the code performs a
number of checks in order to ensure it targets the correct application window before sending
keystrokes. The following excerpt from Brain.swift illustrates this:

// Step 3:
// Fill the operation value
do {

try autoTypeStringNative(value:
operation.value, element: element)

}
catch {

NSLog("@Autofill: Focused window changed
while performing auto-type string native")

return
}

[...]
// Auto-submit
// TODO: Use post-fill action from Brain instead
do {

try await Task.sleep(nanoseconds: ONE_MS * 100)
}
catch {

//
}
CoreLogging.log("typing enter")
autoTypeEnter()

Please observe that the code in autoTypeStringNative contains the following check:

for char in value {
if !element.isFocused() {

throw AutoTypeStringError.elementLostFocus
}

However, the implementation of autoTypeEnter does not:

func autoTypeEnter() {

Secfault Security Confidential Page 15 of 25

Chapter 4

// Enter down
let enterDown = CGEvent(keyboardEventSource: nil, virtualKey:

CGKeyCode(kVK_Return), keyDown: true)
enterDown?.flags.remove(MODIFIER_KEYS)

// Enter up
let enterUp = CGEvent(keyboardEventSource: nil, virtualKey:

CGKeyCode(kVK_Return), keyDown: false)
enterUp?.flags.remove(MODIFIER_KEYS)

enterDown?.post(tap: .cghidEventTap)
enterUp?.post(tap: .cghidEventTap)

CGEvent(source: nil)?.post(tap: .cghidEventTap)
}

While the code repeatedly checks the currently focused window when auto-typing a string, it does
not perform this check before pressing the enter key. Additionally, the code adds a 100ms delay
before auto-typing the enter key. This might lead to sending keystrokes to windows that are not
intended to receive them.

Exploiting this situation is however not completely trivial. One option for exploitation could be to
focus a window such as a confirmation dialog, right before the enter key is sent by the code.
However, without sufficient control over the target system, such an attack is not easily
implemented. It should however be noted that besides an actively malicious attack, there could also
be random circumstances (e.g., dialogs popping up right before the enter key is about to be pressed),
which would likely have a negative impact on the user's experience.

Recommended Action

The general design of the autotype-based password filling solution does not allow to send
keystrokes directly to a window - instead, key strokes are sent to the currently focused window.
While the code aims to mitigate possible problems by checking the focused window before sending
keystrokes, such checks are inherently prone to race conditions. That said, such race conditions
might be hard to exploit for attackers without sufficient privileges on the target system, as such
attackers would need to accurately time window focus switches.

In order to tighten this mitigation, it is hence advised to also check the currently focused window
before generating the key press event for the enter key.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

Secfault Security Confidential Page 16 of 25

Chapter 4

4.5 Non-Atomic Verification Logic
Summary

Type Location Severity
Design ffi/core-node/src/

integrity_verification.rs
High

Technical Description

As described in section 4.1 of this document, the 1Password application implements an integrity
checking logic, which aims to detect modifications to the app.asar file. While reviewing this
implementation, it was found that is generally prone to race conditions.

The integrity checking logic for the app.asar file is invoked after the native code has been loaded;
however, it cannot guarantee that the app.asar file it verifies is the same app.asar file that would
be used by the Electron framework. In other words, the implementation does not act atomically
when verifying/loading the app.asar file. This is a general shortcoming of the integrity checking
implementation, which might be exploitable in order to perform modifications to the app.asar file.

Recommended Action

This issue cannot easily be addressed without changing the overall verification logic. Secfault
Security is aware of the fact that this is a non-trivial change. A robust implementation would
involve creating a signature on the app.asar file, which is checked at load time by the Electron
framework. One possible work-around could be to prevent users from modifying the app.asar file
by making use of file permissions. If, for example, the 1Password application was installed to a
location that is not writable by regular users, this would at least prevent attackers with user
privileges (e.g., in a malware scenario) from performing such modifications.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

Secfault Security Confidential Page 17 of 25

Chapter 4

4.6 Symlink Attack in Updater Implementation
Summary

Type Location Severity
Code core/apple/macOS/

FileManager+Authorization.swi
ft

High

Technical Description

While reviewing the 1Password updater implementation, it was found that the code does not
properly take into account that an attacker might have modified the source and/or destination
directories, so that they contain symbolic links. Please observe the following excerpt from
FileManager+Authorization.swift:

if FileManager.default.fileExists(atPath: dst) {
shellCommand = String(format: """

 /bin/rm -
rf \"$DST_PATH\" &&

 /bin/mv -
f \"$SRC_PATH\" \"$DST_PATH\" &&

/usr/sbin/chown -R %d:%d \"$DST_PATH\"

 """,
 sb.st_uid, sb.st_gid)

The code executes a shell command for moving an updated version of the 1Password application to
its destination directory. Please note that this code is executed using the (deprecated)
AuthorizationExecuteWithPrivileges function and hence runs with root privileges. It can be
observed that the code contains a number of issues. On the one hand, the invocation of the rm
command is not atomically tied to the mv command: after the rm command succeeded, the
$DST_PATH directory could have been re-created by an attacker.

Furthermore, please note that the code does not check for the presence of symbolic links. If, for
instance, $DST_PATH was a symbolic link pointing to another directory (e.g., to /etc), the code
would copy files to the /etc directory. This might allow local attackers to elevate their privileges.

Recommended Action

Generally, it is recommended to reconsider the approach of executing shell commands with root
privileges. If this is not possible, one mitigation could be to first change the ownership and access
permissions of the source and target files, so that only the root user can access them, check that no
links are present and subsequently replace the files in the destination directory.

Secfault Security Confidential Page 18 of 25

Chapter 4

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

Secfault Security Confidential Page 19 of 25

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 Missing Validation of Shell Command Input
A cursory evaluation of used shell commands within the code based revealed that variables are not
always validated before being used to construct a command being executed by an external shell. For
example the following excerpt from the file apple/macOS/1Password
Autofill/Brain/Brain.swift shows an instance of this:

func appleScriptToGetTerminalTty(bundleId: String) -> String {
 switch bundleId {
 case "com.apple.Terminal":
 return """
 tell app id "com.apple.Terminal"
 set myTty to tty of tab in window 1
 end tell

 return myTty
 """
 ...
 }
}

func collectTerminalElement(app: NSRunningApplication) -> AXUIElement? {
...
 guard let tty = scriptRunner.executeAndReturnError(&error).stringValue else {
 CoreLogging.log("Script Error: %@", String(describing: error))
 return .none
 }

 let hasEcho = shell("/bin/stty -f \(tty) | /usr/bin/grep 'icanon'")
 if !hasEcho.isEmpty {
 CoreLogging.log("Terminal in echo mode, filling disabled")
 return .none
 }
...

The result of the AppleScript invocation to retrieve the tty of a terminal is used to construct a shell
command without prior validation. This might lead to potential command or argument injection
issues and is considered to be best practice when working with shell scripts.

Secfault Security would like to recommend to validate all input to shell commands. If possible, it is
advised to not directly execute commands through the shell as this is prone to missing quotation or

Secfault Security Confidential Page 20 of 25

Chapter 5

escaping of arguments. If executing external commands is required, it is advised to directly invoke
the respective command using the execv() function family.

5.2 Exposure of Unsafe Functions to Frontend Code
While analyzing the implementation for possible exploitation paths for the issues described in
sections 4.1 and 4.5, it was found that the 1Password application exposes functionality to the
JavaScript frontend code, which might be abused in order to trigger memory corruption issues. One
obvious instance is the function unsafe_set_vibrancy, which takes a window handle as an
argument. A cursory inspection revealed that by providing an invalid window handle (e.g., the value
0x4141414141414141), it appears to be possible to at least trigger an invalid memory access in the
1Password application.

While the application makes use of code signing and the hardened runtime feature, triggering and
exploiting memory corruption issues might be a possible way for executing untrusted native code
inside the application's memory space. This in turn would for instance allow for XPC
communication with privileged helper services, such as the autofill service.

It is therefore recommended to review the functions exposed to the frontend JavaScript code for
such patterns and to enforce a strict validation of their arguments. Ideally, the JavaScript code
should not be able to provide "raw" arguments that are subsequently used to perform memory
accesses.

5.3 Use of PIDs for Security Checks
While reviewing the autofill implementation, it was found that the code makes use of process IDs
for performing security checks. For instance, please consider the following code excerpt from
1Password

Autofill/Brain/Brain.swift:

let leafProcessPid = procInfo.first {
!processPpids.contains($0.kp_proc.p_pid)

}.map {
$0.kp_proc.p_pid

}

guard let pid = leafProcessPid else {
CoreLogging.log("Failed to get leaf process PID")
return .none

}

let absolutePathToExecutable: String
switch absoluteExecutablePathForProcess(pid: pid) {

case .success(let path):
absolutePathToExecutable = path

Secfault Security Confidential Page 21 of 25

Chapter 5

case .failure(let e):
CoreLogging.log("Failed to get absolute path to executable for

process: %@", String(describing: e))
return .none

}

// Confirm that the leaf process is /usr/bin/sudo
if absolutePathToExecutable != "/usr/bin/sudo" {

CoreLogging.log("Absolute path to executable running in tty was
not /usr/bin/sudo, filling disabled")

return .none
}

It can be observed that the code aims to check whether /usr/bin/sudo is currently running in a
terminal window, in order to ensure that auto-filling a users password is only performed when the
legitimate sudo binary prompts for the password. However, on the one hand this scheme is
inherently racy: it cannot guarantee that after checking the running binary, sudo still remains
running. Furthermore, it can be observed that the checks are performed based on the progress ID of
the program running in the target terminal. It should be noted that using process IDs for such
purposes generally comes with the risk of possible PID wrap attacks. While this might not pose a
direct threat in the above scenario, it should generally be highlighted that a more solid approach
would be to use audit tokens.

Secfault Security Confidential Page 22 of 25

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits Inc dba 1Password reviewed the
identified issues and provided feedback, describing their assessment. In order to provide full
transparency, this feedback is included in the below sections.

6.1 Integrity Verification Bypass (Unpacked App) (Finding 4.1)
We have accepted the issue as a low severity issue. We are looking to include improved validations
that prevent the identified issue in 1Password for Mac 8.8.

6.2 Missing Quotes in Shell Command (Finding 4.2)
We have accepted the issue as a best practice issue. 1Password for Mac 8.7.1 will contain correct
shell quotes that prevent the identified issue.

6.3 Weak XPC Client Validation (Finding 4.3)
We have accepted the issue as a best practice issue. 1Password for Mac 8.7.1 will use audit tokens
to validate XPC connections.

6.4 Missing Focus Check in AutoType Implementation (Finding
4.4)

We have accepted the issue as a best practice issue. 1Password for Mac 8.7.1 will contain improved
validations at the time the filling action is performed.

6.5 Non-Atomic Verification Logic (Finding 4.5)
We have accepted the issue as a low severity issue. We were previously aware of this limitation in
our local verification logic, and have worked with the Electron team to come up with an improved
method of verifying Electron resources. A future version of 1Password 8 will contain these
validations.

6.6 Symlink Attack in Updater Implementation (Finding 4.6)
We have accepted the issue as a best practice issue. We are discussing potential solutions to this fix,
and anticipate that a future version of 1Password will contain mitigations.

Secfault Security Confidential Page 23 of 25

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its severity. The meaning of the individual ratings are provided in the
following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description
Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Severity
The severity of a vulnerability describes a combination of the likelihood of attackers exploiting the
vulnerability, and the impact of a successful exploitation.

Severity Rating Description
Not Exploitable This finding can most likely not be exploited.

Low The vulnerability is either hard to exploit (e.g., because a successful
exploitation requires significant prerequisites) or its consequences can be
considered benign.

Medium The vulnerability can be exploited (possibly under certain preconditions) and a
successful exploit can be used to at least partially bypass the security
guarantees of the solution.

High The vulnerability can be exploited easily and a successful exploit bypasses one
of the core security properties of the solution.

Critical The vulnerability can be exploited easily and a successful exploit can be used
to compromise systems beyond the scope of the analysis.

Secfault Security Confidential Page 24 of 25

Chapter 8

8 Glossary

Term Definition
ID Identification

Secfault Security Confidential Page 25 of 25

	1 Executive Summary
	2 Overview
	2.1 Target Scope
	2.2 Test Procedures
	2.3 Project Execution

	3 Result Overview
	4 Results
	4.1 Integrity Verification Bypass (Unpacked App)
	4.2 Missing Quotes in Shell Command
	4.3 Weak XPC Client Validation
	4.4 Missing Focus Check in AutoType Implementation
	4.5 Non-Atomic Verification Logic
	4.6 Symlink Attack in Updater Implementation

	5 Additional Observations
	5.1 Missing Validation of Shell Command Input
	5.2 Exposure of Unsafe Functions to Frontend Code
	5.3 Use of PIDs for Security Checks

	6 Customer Feedback
	6.1 Integrity Verification Bypass (Unpacked App) (Finding 4.1)
	6.2 Missing Quotes in Shell Command (Finding 4.2)
	6.3 Weak XPC Client Validation (Finding 4.3)
	6.4 Missing Focus Check in AutoType Implementation (Finding 4.4)
	6.5 Non-Atomic Verification Logic (Finding 4.5)
	6.6 Symlink Attack in Updater Implementation (Finding 4.6)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Severity

	8 Glossary

