
Secfault SecuritySecfault Security

1Password in the Browser

Security Assessment

Report
FINAL

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 AgileBits

- hereafter called "Agilebits" -

This document contains proprietary and confidential information of Secfault Security and the recipient. Publication or distribution
without prior written permission is forbidden.

Secfault Security

Chapter

Document History

Version Author Date Comment
0.1 Leonard König 2022-06-24 First Draft

0.2 Gregor Kopf 2022-06-28 Internal Review

0.3 Leonard König 2022-07-27 Customer Comments

0.4 Dirk Breiden 2022-07-29 Last Customer Comment

1.0 Dirk Breiden 2022-07-29 Create Final Version

1.1 Gregor Kopf 2022-11-03 Included Additional Feedback

Secfault Security Confidential Page 2 of 17

Chapter

Table of Contents
1 Executive Summary..4
2 Overview..5

2.1.1 Target Scope..5
2.1.2 Test Procedures...5

2.1.2.1 Native Messaging Host...6
2.1.2.2 1Password in the Browser...6
2.1.2.3 Save in 1Password API..6

2.2 Project Execution..6
3 Result Overview...8
4 Results..9

4.1 Browser Verification Bypass (Linux)...9
4.2 Compromised Shared Lock State Leads to Full Data Access...13

5 Additional Observations...14
5.1 Unhandled Error Returns in Domain Punycode Conversion..14

6 Customer Feedback..15
6.1 Browser Verification Bypass (Linux) (Finding 4.1)...15
6.2 Compromised Shared Lock State Leads to Full Data Access (Finding 4.2)...........................15
6.3 Unhandled Error Returns in Domain Punycode Conversion (Finding 5.1)............................15

7 Vulnerability Rating...16
7.1 Vulnerability Types...16
7.2 Severity...16

8 Glossary..17

Secfault Security Confidential Page 3 of 17

Chapter 1

1 Executive Summary
Secfault Security was tasked by Agilebits with a security review of selected parts of the 1Password
ecosystem, namely "1Password in the browser" (b5x) along with its accompanying components.
The review has been performed in the time frame from 2022-06-07 to 2022-06-24. This document
describes the results of the project.

1Password in the browser aims to improve the integration between 1Password and web browsers, so
that for instance passwords and other sensitive information can be directly filled from within the
browser session. Furthermore, the "Save in 1Password" API enables selected web sites to allow
users to directly store confidential information into a 1Password vault.

During the review two issues, which are described in detail in section 4 of this document, have been
identified. Section 5 of this document provides additional observations and recommendations for
components that were not in scope of the review.

Overall, the reviewed codebase left a positive impression. The code is well-structured and readable
and a large number of common possible security issues have been avoided. This indicates that the
code has been implemented with security in mind.

After having received a draft version of this document, Agilebits provided feedback on the
identified issues, which can be found in section 6 of this document.

Secfault Security Confidential Page 4 of 17

Chapter 2

2 Overview
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store various passwords, software licenses, and other
sensitive information in virtual vaults.

Agilebits tasked Secfault Security with a review of the "1Password in the browser" feature as part
of their product suite, with its optional feature to share its lock state with the native app, removing
the need for duplicate password entry to unlock different components of 1Password.

Further, the "Save in 1Password" API to communicate with the aforementioned 1Password in the
browser extension, alongside with an NPM package helping to implement a button consuming this
API was part of the project.

In section 2.1.1 of this document, a description of the project's scope is provided. Section 2.1.2
provides details on the test procedures.

2.1.1 Target Scope
The following source code archives have been provided by Agilebits for review:

• core at revision release-stable-2.3.5

Furthermore, Agilebits provided the respective installation packages for 1Password in the browser
at the above mentioned revision, as well as links for downloads to the official 1Password desktop
client and the NPM package for the "Save in 1Password" API.

2.1.2 Test Procedures
The overall project followed a white-box approach, which means that Agilebits provided the source
code, the compiled binaries and technical documentation for the solution. Therefore, the solution
has been analyzed by performing a source code review, as well as targeted dynamic testing.

The source code review has been performed in a manual fashion, i.e., without relying on automated
vulnerability scanners or similar tools. Besides identifying possible classical implementation
weaknesses, one main focus of the review was the identification of potential logic problems. This
requires an in-depth understanding of the solution's inner workings, which is best achieved by a
manual process.

The dynamic tests have been performed in a targeted fashion. On the one hand, this served the
purpose of validating issues identified during the source code review. On the other hand, dynamic
tests were also performed to obtain a better understanding of the overall solution and the interplay
of its individual components.

Secfault Security Confidential Page 5 of 17

Chapter 2

2.1.2.1 Native Messaging Host
The NMH implementation has been reviewed, focusing on various types of implementation and/or
logical issues. On the one hand, the overall communication scheme between the NMH and the
1Password application has been subject to review. On the other hand, the communication between
the browser and the NMH has been analyzed.

This led to the identification of the issue described in section 4.1 of this document.

Furthermore, checks have been performed on the implementations of the communication protocols
(e.g., the JSON parsing for the NMH communication), as well as on the general application logic.
However, no issues have been identified in this area.

2.1.2.2 1Password in the Browser
1Password in the browser has been reviewed, focusing on different types of possible vulnerabilities.
These included the following:

• XSS or similar issues

• Missing or bad verification of the website URIs (so that malicious websites could obtain
passwords they are not entitled to)

• Missing or bad isolation of the extension background scripts and content scripts from websites

• Usage of untrusted information from possibly malicious websites' DOMs

• Autofill logic issues

2.1.2.3 Save in 1Password API
The provided code has been subject to review, focusing on classical implementation issues and
possible logic problems, including:

• XSS or similar issues

• Vulnerabilities in the encryption scheme used for confidential information

• General information-leakage issues

• General logic issues when adding information to the user's vaults

2.2 Project Execution
The project has been executed in the time frame from 2022-06-07 to 2022-06-24 in seven person
days.

The consultants assigned to this projects were:

• Maik Münch

• Leonard König

Secfault Security Confidential Page 6 of 17

Chapter 2

• Gregor Kopf

Secfault Security Confidential Page 7 of 17

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Severity
Browser Verification Bypass (Linux) 4.1 Design Medium

Compromised Shared Lock State Leads to Full Data Access 4.2 Design Medium
Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Confidential Page 8 of 17

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 Browser Verification Bypass (Linux)
Summary

Type Location Severity
Design Browser Verification Medium

Technical Description

1Password in the browser can optionally communicate with the 1Password desktop application
through a Native Messaging Host (NMH). This is used to launch the 1Password desktop window
when creating a new password from the browser instead of from within the extension, if the feature
is activated. Furthermore, it allows 1Password in the browser to be automatically logged in with the
user's credentials when the 1Password desktop application is logged in, removing the need for
additional input of the password.

To securely implement this functionality, the 1Password desktop application, which provides both
the actual application logic as well as the NMH, must verify that the application requesting the
login credentials is indeed 1Password in the browser.

In order to do so, the 1Password desktop app verifies that the process it is communicating with via a
UNIX domain socket, is indeed the NMH or at least carrying the privileges of the onepassword
group; and the NMH binary verifies that the immediate parent process is installed by the root user
and from a list of trusted applications (since /bin/sh is installed by root but can be used to launch
arbitrary code).

However, an attacker may launch a "trusted" application such as Chrome in a modified
environment, using e.g., an attached debugger or LD_PRELOAD to modify its execution environment.
This way, the trusted application is compromised and can be used to launch the NMH while being
under an attacker's control. One way to exploit this is to send a NmRequestAccounts request to
1Password Desktop which will then print out the secrets needed to login to 1Password without
needing to enter a password, as 1Password in the browser does.

This will allow an attacker to make use of the "Shared Lock State" and leads to a full compromise

Secfault Security Confidential Page 9 of 17

Chapter 4

of the data held in this state. In order to investigate and demonstrate this attack, a PoC was
developed, based on this finding.

Recommended Action

Trusting a (parent) process based on its properties rather than cryptographic attestation is not
compatible with the classic POSIX/UNIX process model. While client processes are under some
control by their parent (execution environment, privileges), parent processes are generally difficult
to inspect from the child's perspective. A framework to provide such trust would live outside of the
UNIX process model, and may consist of, e.g., additional system calls for attestation, lockdown and
anti-tamper, using the OS kernel to verify the user space processes.

That being said, one option for mitigating the risk might be to educate users about the fact that in
presence of local attackers, the confidentiality of their vault information cannot be fully guaranteed.
Furthermore, please also refer to the finding described in section 4.2, which discusses additional
measures that could help reduce the emerging risks.

Reproduction Steps

The provided exec-hook.so file can be preloaded into a trusted application's process image; it will
override the exec(2) family of functions and use the dlfcn.h API to pass their arguments to the
original C library instances of these functions, logging the calls in-between. Further, it will kill its
"host" trusted application's process, and launch the NMH from within its context. Please note that
the launched NMH executable is unchanged, and its setgid bit allows the hooked process to use
the privileges of the group of its owner.

$ LD_PRELOAD=$PWD/exec-hook.so /usr/lib/chromium/chromium
$ ps aux | grep op-browser-support
ljrk 59350 0.0 0.0 624284 8684 ? Sl 17:47 0:00
/usr/local/bin/op-browser-support
chrome-extension://hjlinigoblmkhjejkmbegnoaljkphmgo/
ljrk 59364 0.0 0.0 7040 2804 pts/5 S+ 17:47 0:00 grep --
color=auto op-browser-support

Using the process ID of the NMH, one can look up the process ID of the parent and use that to
retrieve the parent processes' executable in procfs:

$ cut -d' ' -f4 /proc/59350/stat
59348
$ ls -l /proc/59348/exe
lrwxrwxrwx 1 ljrk ljrk 0 9. Jun 17:47 /proc/59348/exe ->
/usr/lib/chromium/chromium

This illustrates that the parent executable of the NMH is indeed Chromium.

Finally, one can check the logs to see whether the NMH indeed verifies its parent process to be a
valid browser:

Secfault Security Confidential Page 10 of 17

Chapter 4

$ cat $XDG_CONFIG_HOME/1Password/BrowserSupport/1Password_rCURRENT.log
INFO 2022-06-10T09:45:04.864 main(ThreadId(1)) [1P:native-messaging/op-
browser-support/src/main.rs:163] Starting 1Password-BrowserSupport 8.7.0-
28.BETA debug build no. 999999999.
INFO 2022-06-10T09:45:04.866 main(ThreadId(1)) [1P:native-messaging/op-
browser-support/src/browser_verification/linux.rs:40] Verifying browser
"/usr/lib/chromium/chromium"
INFO 2022-06-10T09:45:04.867 main(ThreadId(1)) [1P:native-messaging/op-
browser-support/src/browser_verification/linux.rs:54] Browser
"/usr/lib/chromium/chromium" verified successfully
INFO 2022-06-10T09:45:04.867 main(ThreadId(1)) [1P:native-messaging/op-
browser-support-lib/src/communication_logic.rs:122] Starting SLS communication
(attempting connection to desktop app)
INFO 2022-06-10T09:45:04.867 main(ThreadId(1)) [1P:native-messaging/op-
browser-support-lib/src/communication_logic.rs:194] Desktop app not running, no
connection established

In order to illustrate the messages exchanged between the NMH and the desktop application, a
small proxy has been developed. This proxy acts as a NMH towards the browser, and uses the
actual NMH binary to communicate with the desktop app. The proxy source code has been
delivered to Agilebits separately from this report.

In order to use this proxy, the 1Password app must be launched first, as it will install/override the
NMH manifest. This manifest, which resides at e.g.,
~/.config/google-chrome/NativeMessagingHosts/com.1password.1password.json is then
modified to point to the path of the nmh_proxy application attached.

When the NMH is launched by the browser, the proxy will launch the original NMH as its own
child and intercepts the communication between the browser / 1Password in the browser and the
1Password application through the original NMH, logging data sent from the former to
/tmp/stdin.log, and data sent from the latter to /tmp/stdout.log.

Each request/response sent by these means is prefixed with a 32 bit length, followed by a JSON
object of that size in bytes. This may contain e.g., the following:

{
 "type": "Success",
 "content": {
 "callbackId": 3963783914,
 "response": {
 "type": "NmRequestAccounts",
 "content": {
 "accounts": [
 {
 "type": "Unlocked",
 "content": {
 "details": {

Secfault Security Confidential Page 11 of 17

Chapter 4

 "accountUuid": "KNVF3T2FEJBMVGZ2DEL4AMBKHE",
 "accountName": "1Password / SecFault",
 "userVersion": 3,
 "email": "leo@secfault-security.com",
 "server": "1password.com",
 "signInAddress": "https://1passwordsecfault.1password.com/",
 "userUuid": "JLTVO6K7ZFFFHAVXXV2W2T7ILA"
 },
 "secretKey": "RE-DACTED-REDACT-EDRED-ACTED-REDAC-TEDRE",
 "muk": {
 "kty": "oct",
 "kid": "mp",
 "alg": "A256GCM",
 "k": "r3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr3d",
 "ext": true,
 "key_ops": [
 "encrypt",
 "decrypt"
]
 },
 "srpX":
"r3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr3d4ct3dr"
 }
 }
],
 "authorizable": true
 }
 }
 }
}

Please observe that this JSON object contains the user login data and credentials such as
secretKey, muk.k and srpX.

Secfault Security Confidential Page 12 of 17

Chapter 4

4.2 Compromised Shared Lock State Leads to Full Data
Access

Summary

Type Location Severity
Design Shared Lock State Medium

Technical Description

As described in the finding 4.1, an attacker may circumvent the browser verification in order to
impersonate the legitimate Native Messaging Host (NMH) to the 1Password Desktop application.

As outlined in that finding, this will lead to being able to read the full Shared Lock State, containing
all required keys to decrypt and access the passwords stored in the vault. This behavior is by design,
and can likely not easily be changed. However, apart from the verification of the browser by the
NMH binary, there currently is no second line of defense. It might therefore be worthwhile to
consider introducing a stricter scheme for accessing passwords via the NMH. This issue serves the
purpose of raising awareness for such considerations.

Recommended Action

One option for mitigating the risk of exposing confidential information via the NMH could be to
obtain passwords directly from the desktop app. 1Password in the browser could be required to
query the desktop app for each password individually; subsequently, the desktop app could confirm
with the user, whether accessing the respective password is intended.

Such a confirmation could also be made optional, in case the user decides to accept the emerging
risks.

Reproduction Steps

Please refer to finding 4.1 for a PoC MITM attack dumping all the secrets necessary to share the
lock state with the desktop application.

Secfault Security Confidential Page 13 of 17

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 Unhandled Error Returns in Domain Punycode Conversion
The file op-domain/src/lib.rs provides functions such as naked_domain_for_host which uses
the idna crate to convert punycode encoded domains to unicode, checking for erroneously encoded
punycode domains:

let (unicode_naked_domain, res) = idna::domain_to_unicode(ascii_naked_domain);
res.ok()?;

However, the code in e.g., op-ui/src/view_item/website.rs does not check the error result of
the function in the same way:

let unicode_domain = idna::domain_to_unicode(host).0;

Since domain_to_unicode is guaranteed to always return a valid string, e.g., host = "xn--foo-
a.de" would result in unicode_domain being foo.de.

A potential check for equality of those two domains would thus evaluate to true, and may cause
issues when matching against domain names.

Secfault Security Confidential Page 14 of 17

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits reviewed the identified issues and
provided feedback, describing their assessment. In order to provide full transparency, this feedback
is included in the below sections.

6.1 Browser Verification Bypass (Linux) (Finding 4.1)
We've reviewed this issue and reviewed the provided recommended action options. Of the options
presented, we currently mitigate the risk through user education provided in the 1Password Security
Design Whitepaper. The technical option within the recommended actions is not viable due to the
potential for application failure in many valid Linux setups. Refer to sections "Malicious client" and
"Malicious processes on your devices" within the 1Password Security Design Whitepaper for more
information, potential risks, and threats.

6.2 Compromised Shared Lock State Leads to Full Data
Access (Finding 4.2)

We've reviewed this issue and it requires the finding in 4.1 to be exploited prior to being able to
access/compromise the data. This is addressed in the 1Password Security Design Whitepaper.

6.3 Unhandled Error Returns in Domain Punycode Conversion
(Finding 5.1)

We've accepted this finding as a best practice issue. In the future, 1Password will investigate any
necessary changes to the implementation.

Secfault Security Confidential Page 15 of 17

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its severity. The meaning of the individual ratings are provided in the
following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description
Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Severity
The severity of a vulnerability describes a combination of the likelihood of attackers exploiting the
vulnerability, and the impact of a successful exploitation.

Severity Rating Description
Not Exploitable This finding can most likely not be exploited.

Low The vulnerability is either hard to exploit (e.g., because a successful
exploitation requires significant prerequisites) or its consequences can be
considered benign.

Medium The vulnerability can be exploited (possibly under certain preconditions) and a
successful exploit can be used to at least partially bypass the security
guarantees of the solution.

High The vulnerability can be exploited easily and a successful exploit bypasses one
of the core security properties of the solution.

Critical The vulnerability can be exploited easily and a successful exploit can be used
to compromise systems beyond the scope of the analysis.

Secfault Security Confidential Page 16 of 17

Chapter 8

8 Glossary

Term Definition
API Application Programming Interface

ID Identification

JSON JavaScript Object Notation

MITM Man-In-The-Middle

NMH Native Messaging Host

OS Operating System

PoC Proof-of-Concept

XSS Cross Site Scripting

Secfault Security Confidential Page 17 of 17

	1 Executive Summary
	2 Overview
	2.1.1 Target Scope
	2.1.2 Test Procedures
	2.1.2.1 Native Messaging Host
	2.1.2.2 1Password in the Browser
	2.1.2.3 Save in 1Password API

	2.2 Project Execution

	3 Result Overview
	4 Results
	4.1 Browser Verification Bypass (Linux)
	4.2 Compromised Shared Lock State Leads to Full Data Access

	5 Additional Observations
	5.1 Unhandled Error Returns in Domain Punycode Conversion

	6 Customer Feedback
	6.1 Browser Verification Bypass (Linux) (Finding 4.1)
	6.2 Compromised Shared Lock State Leads to Full Data Access (Finding 4.2)
	6.3 Unhandled Error Returns in Domain Punycode Conversion (Finding 5.1)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Severity

	8 Glossary

