
Secfault SecuritySecfault Security

1Password for Mac

Security Assessment

Report

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 AgileBits

- hereafter called "Agilebits" -

This document contains proprietary and confidential information of Secfault Security and the recipient. Publication or distribution
without prior written permission is forbidden.

Secfault Security

Chapter

Document History

Version Author Date Comment
0.1 Jennifer Gehrke 2022-11-22 First Draft

0.2 Gregor Kopf 2022-11-30 Additions

0.3 Dirk Breiden 2022-12-02 Internal Review

0.4 Gregor Kopf 2023-03-01 Added Customer Feedback

1.0 Gregor Kopf 2023-03-03 Final Version

1.1 Gregor Kopf 2023-03-17 Additional Grammar and Layout Corrections

Secfault Security Confidential Page 2 of 35

Chapter

Table of Contents
1 Executive Summary..4
2 Overview..5

2.1 Target Scope..5
2.1.1 Critical User Flows...5
2.1.2 MacOS Specific Features..5
2.1.3 1Password 8 Added Features..5

2.2 Test Procedures...6
2.3 Project Execution..6

3 Result Overview...7
4 Results..8

4.1 Unprotected Item Fields in 1PIF2 Format..8
4.2 CSV Injection In Export...11
4.3 Questionable Security Advantage of DSecret MFA...13
4.4 Master Password and Secret Key in Export Files...15
4.5 Unsafe chown Call..17
4.6 Insufficiently Authorized MFA Management...20
4.7 Unsafe Client Storage of Secret Key..22
4.8 Import of References to Existing Vaults...24
4.9 Vault Permission Preview Incorrect..28

5 Additional Observations...30
5.1 Vault Display for Favorites...30
5.2 CSV Balanced Quote Check...30
5.3 Backslashes in Items break CSV Export Files..30

6 Customer Feedback..32
6.1 Unprotected Item Fields in 1PIF2 Format (Finding 4.1)..32
6.2 CSV Injection In Export (Finding 4.2)...32
6.3 Questionable Security Advantage of DSecret MFA (Finding 4.3)...32
6.4 Master Password and Secret Key in Export Files (Finding 4.4)...32
6.5 Unsafe chown Call (Finding 4.5)..32
6.6 Insufficiently Authorized MFA Management (Finding 4.6)...32
6.7 Unsafe Client Storage of Secret Key (Finding 4.7)..33
6.8 Import of References to Existing Vaults (Finding 4.8)...33
6.9 Vault Permission Preview Incorrect (Finding 4.9)..33

7 Vulnerability Rating...34
7.1 Vulnerability Types...34
7.2 Severity...34

8 Glossary..35

Secfault Security Confidential Page 3 of 35

Chapter 1

1 Executive Summary
Secfault Security was tasked by Agilebits with a security review of selected components of the
1Password ecosystem, namely version eight of the macOS application. The review has been
performed in the time frame from 2022-11-21 to 2022-12-02. This document describes the results of
the project.

During the review a number of issues, which are described in detail in section 4 of this document,
have been identified. The more severe issues include insecure file ownership handling in the
updater described in section 4.5. Further, a possibly weak default behavior was identified in the
context of the optional Multi Factor Authentication (MFA) (please refer to finding 4.3 for more
details).

Section 5 of this document provides a number of additional observations and recommendations for
further strengthening the security aspects of the solution. Those relate to the clear mapping of items
to the correct vaults in the client UI as well as different defects in the context of CSV handling
(please also note the security issue presented in section 4.2).

Overall, the reviewed client implementation left a positive impression. Only a few issues could be
identified that originate from bad coding patterns. This indicates that the client has been
implemented with security best practices in mind.

After having received a draft version of this document, Agilebits provided feedback on the
identified issues, which can be found in section 6 of this document. Secfault Security would like to
highlight that with respect to the findings 4.3 and 4.6, a number of implicit assumptions have been
made, which do not fully correlate with the design goals of Agilebits. In order to provide full
transparency, the respective findings have not been edited. Please refer to section 6.3 and 6.6, where
an explanation of the MFA design is provided.

Secfault Security Confidential Page 4 of 35

Chapter 2

2 Overview
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store various passwords, software licenses, and other
sensitive information in virtual vaults. Agilebits tasked Secfault Security with a review of the new
macOS version of the 1Password software.

In section 2.1 of this document, a description of the project's scope is provided. Section 2.2 provides
details on the test procedures.

2.1 Target Scope
The below list of aspects summarizes the scope document provided by Agilebits1. The audit focused
on the client implementation as utilized by 1Password for Mac.

2.1.1 Critical User Flows
• Master password and secret key based login

• Master password and secret key based login with activated MFA

• Unlocking of Vaults

2.1.2 MacOS Specific Features
• Removal of main process from Apple sandbox

• Biometric unlock based on TouchID, Apple Watch, or hardware security keys

• New PKG installer

2.1.3 1Password 8 Added Features
• Data Import

• Secure file attachments

• Move item / share items

• Family / Shared Vaults + New sharing details

• Travel Mode

• Password history

• Item archiving and deletion features

The MDM-related aspects of the new PKG installer could not be covered during the assessment,
due to time constraints in the upfront agreed time frame.

1 Q4-22_1Password_8_for_Mac.pdf

Secfault Security Confidential Page 5 of 35

Chapter 2

2.2 Test Procedures
The overall project followed a white-box approach, which means that Agilebits provided the source
code, the compiled binaries and technical documentation for the solution. Therefore, the solution
has been analyzed by performing a source code review, as well as targeted dynamic testing.

The source code review has been performed in a manual fashion, i.e., without relying on automated
vulnerability scanners or similar tools. Besides identifying possible classical implementation
weaknesses, one main focus of the review was the identification of potential logic problems. This
requires an in-depth understanding of the solution's inner workings, which is best achieved by a
manual process.

The dynamic tests have been performed in a targeted fashion. On the one hand, this served the
purpose of validating issues identified during the source code review. On the other hand, dynamic
tests were also performed to obtain a better understanding of the overall solution and the interplay
of its individual components.

2.3 Project Execution
The project has been executed in the time frame from 2022-11-21 to 2022-12-02.

The consultants assigned to this projects were:

• Jennifer Gehrke

• Finn Westendorf

• Gregor Kopf

Secfault Security Confidential Page 6 of 35

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Severity
Unprotected Item Fields in 1PIF2 Format 4.1 Code Medium

CSV Injection In Export 4.2 Code Low-Medium

Questionable Security Advantage of DSecret MFA 4.3 Design High

Master Password and Secret Key in Export Files 4.4 Design Medium

Unsafe chown Call 4.5 Code High

Insufficiently Authorized MFA Management 4.6 Code Medium

Unsafe Client Storage of Secret Key 4.7 Design Medium

Import of References to Existing Vaults 4.8 Code Low

Vault Permission Preview Incorrect 4.9 Observation N/A
Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Confidential Page 7 of 35

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 Unprotected Item Fields in 1PIF2 Format
Summary

Type Location Severity
Code Data Export Format Medium

Technical Description

As part of the audit of the data import feature, a static code review was performed. Parsers for four
different formats were detected: CSV, 1PUX, 1PEX and 1PIF2. The last two formats support the
protection of the exported contents with AES-GCM encryption, which provides data integrity
protection, due to its AEAD nature. For the 1PIF2 format, this encryption was found to be applied
incompletely on the final vault item, whereby the respective fields could be manipulated.

Discussions with Agilebits and dynamic tests revealed that this format is not actively used by the
provided client. The issue is nevertheless raised since it relates to the issue "4.2.2 Unauthenticated
Meta Information in Database" reported in the SSH agent security audit in March 2022 and should
be addressed in case the format is ever supported for end users.

The routines parsing the different vault items from the 1PIF2 file were found to replicate certain
fields without previous decryption. The respective implementation is located in the file op-import-
export/src/models/translation/onepux/v2.rs:

1479 pub(crate) fn decrypt_1pif2_vault_item<R: Read>(
1480 item_data: R,
1481 keys: &Keys,
1482) -> Result<InnerVaultItem, error::Error> {
1483 let e_vault_item: EncryptedVaultItem =
1484 de_from_reader(item_data,
DeserializeError::EncryptedVaultItem)?;
1485
1486 let overview = {
1487 let overview_bytes =
decrypt_message(&e_vault_item.encrypted_overview, keys)?;
1488 de_from_slice(&overview_bytes,
error::DeserializeError::ItemOverview)?

Secfault Security Confidential Page 8 of 35

Chapter 4

1489 };
1490
1491 let details = {
1492 let details_bytes =
decrypt_message(&e_vault_item.encrypted_details, keys)?;
1493 deserialize_item_details(&details_bytes)?
1494 };
1495
1496 Ok(InnerVaultItem {
1497 uuid: ExportItemUuid::from_string(e_vault_item.uuid),
1498 fav_index: e_vault_item.fav_index,
1499 created_at: e_vault_item.created_at,
1500 updated_at: e_vault_item.updated_at,
1501 trashed: e_vault_item.trashed,
1502 category_uuid: e_vault_item.category_uuid,
1503 overview,
1504 details,
1505 })
1506 }

Here the encrypted vault item is first read from its JSON representation, decrypting the
encrypted_overview and encrypted_details fields afterwards. Finally an InnerVaultItem is
created from this information, copying the values of the uuid, fav_index, updated_at, trashed
and category_uuid directly from the encrypted item.

Example 1PIF2 files contained in the client source code repository confirmed this impression. By
unzipping the file op-import-export/test_exports/1pif2/valid/base.zip, a directory
<account_uuid>.account containing <vault_uuid>.vault directories is created. Those contain
the encrypted items in files named <item_uuid>.enc_item, with the following exemplary content:

{
 "encryptedOverview": {
 "iv": "432W2D5yECNbjRNV",
 "data": "BqhydtVAQ7MOGto0fmlPLSP9EAeLbsI_N5OF-
IyyQQ0fdi1AQqAXy4H09_Si9da5aE0A0mCy_A-
QG31XVFFPPHQX2iyKIZ7FLnbdQgqYM5mgJzTObX7uv0cxs3iVojKCeYigGBmTEDsyuYy1IOrISsooLJ
tXERt1GmpD-
btUUjDaV3xTIJlbF2mHio11PJthlCqeJlN5wMmtdjLcanxyVtK6c4IWLH6wJ0ypvTtYJUAfH2QgrblK
ddwid8kECw2GPwA1",
 "enc": "A256GCM",
 "kid": "ubhdkwxzsjanjdz5mmuzpabew4",
 "cty": "b5+jwk+json"
 },
 "categoryUuid": "001",
 "encryptedDetails": {
 "iv": "0BpN2HEm_DxPFOT2",
 "data": "BILmo3iGBE9ZOkgJyC-
JxdTdb2nGWZN92rAemN6NTzalgkdUe8QisUVAxzEZK0x_lBYzpVHUI0VEjw0QBOvuHAr9oFBpba94_V

Secfault Security Confidential Page 9 of 35

Chapter 4

NhCCRSqeZ1TTfwGqViq3yrDl5vXfMx-axhicFsXjlC0p-
FtkSb4qRxWwOj8fsamWESt75fRaSc9hE1VrJhwPdXRT-
Jd8h8ZksYphHjaOx9jc2_jsvnNcHmVpCLfqhJ8f1v-xSAonYItqkVe03ajW_ztfkUd83WFDxkQPs",
 "enc": "A256GCM",
 "kid": "ubhdkwxzsjanjdz5mmuzpabew4",
 "cty": "b5+jwk+json"
 },
 "uuid": "se3rseo6kvavxmca7jm2hjhndy",
 "favIndex": 0,
 "createdAt": 1247253633,
 "updatedAt": 1540244860,
 "trashed": true
}

As one can easily observe, the listed item fields are contained in plain text. Since the source code
review showed no additional integrity protection measures, an attacker should be able to manipulate
these fields. For considerations regarding the sensitivity of the favIndex field please refer to
section 5.1.

Recommended Action

It is recommended to include the whole vault item representation in the applied AEAD encryption
to protect the named fields. Further, it is advisable to consider whether the design for encrypted
formats should be adjusted in a way that entries of the exported archive cannot be removed or
permuted unnoticed. The current implementation iterates through the archive entries based on the
available file names matching an extension, e.g. .enc_item, and decrypts each single file with the
available key material. Instead, information on the vaults that exist in an account and items that
belong to an exported vault could be integrated in the account or vault serialization. This
information, for example cryptographic file content hashes, should allow to detect the removal or
exchange of file contents.

Secfault Security Confidential Page 10 of 35

Chapter 4

4.2 CSV Injection In Export
Summary

Type Location Severity
Code CSV Export Low-Medium

Technical Description

Data like saved logins may be exported as .csv file, if the correct permissions are present. Most
software that displays CSV files can use so called formulas, which can be used to perform various
tasks, including potentially executing code. It was found that the 1Password export does not escape
the characters needed to create formulas, which results in a vulnerability known as "CSV injection".

When a malicious user can edit an item, other users exporting this item and looking at the resulting
CSV e.g., in Excel, might be compromised.

Recommended Action

Secfault Security recommends to follow the approach outlined by OWASP2 to escape the cell
content correctly:

• Wrap each cell field in double quotes

• Prepend each cell field with a single quote

• Escape every double quote using an additional double quote

Alternatively existing logic can be reused here, as a CSV injection bug was fixed by 1Password in a
previous assessment of a different software component3.

Reproduction Steps

To reproduce this issue, please enter a known CSV injection payload in a field which will be
exported e.g., as a password, and create a CSV export.

• First please open the macOS client, login and make sure at least one Login exists

• Please modify the existing login, so that the password is =cmd|' /C calc'!A0

• Now open the export dialog File > Export > Name Of Organization

• Please enter your password

• Now select CSV as export type and save the file

When the resulting .csv is opened in a text editor, there should be a cell with the content =cmd|...

2 https://owasp.org/www-community/attacks/CSV_Injection
3 https://bucket.agilebits.com/security/378.2101-Recurity_Labs-Report-B5-v1.0.pdf

Secfault Security Confidential Page 11 of 35

Chapter 4

as set before. This means CSV formula injection was successful.

Secfault Security Confidential Page 12 of 35

Chapter 4

4.3 Questionable Security Advantage of DSecret MFA
Summary

Type Location Severity
Design DSecret MFA High

Technical Description

During the source code review of the client login routines, several MFA mechanisms were found to
be supported to protect the account in cases were attackers gained access to its master password.
One of these is based on so-called DSecrets, which are device-specific secrets that were found to be
stored in the OS keyring or in the local storage of the browser. Those are enrolled to the device on
the first successful MFA via one of the other enabled mechanism, e.g. TOTP. This way, a user can
still establish connections to the backend by unlocking the vault with the master password alone or
by using biometric unlock. While the idea behind this characteristic is plausible from the usability
perspective, it is considered highly questionable that it is activated by default and the DSecret
validity is in principle endless, according to statements of Agilebits.

The result of this feature is, that solely the device enrollment can be considered to require MFA.
However, the enrollment already requires two secrets: the master password and the account's secret
key. While both are technically of the same type, they can still be considered to have a different risk
of being compromised. While the master password is regularly used, the secret key is utilized
during client enrollments only, whereby it is significantly less exposed. Consequently, only a small
security advantage is gained by the current MFA implementation: This depends on the protection
the specific client can apply to its storage. In case a OS keychain is available and used, the ability to
execute code on the specific device functions as a second authentication factor. The more
comparable the security of the DSecret storage gets to that of the secret key (please note that section
4.7 recommends the storage of the secret key in the keychain), the smaller the advantage will be. In
general, users, especially in business contexts, would rather expect that the MFA has to be
performed at least periodically.

Recommended Action

Secfault Security recommends to introduce configuration options for the utilization of the DSecret
mechanism. Those should cover both the ability to fully deactivate this mechanism for an account
as well as the option to specify a expiry time-frame. This should be possible either by the user
directly or by the superordinate business account. Changes to these settings must be authorized the
same way as turning off MFA (see the recommendations given in section 4.6).

On enabling MFA for an account or all team members, the user should be requested to confirm that
this mechanism is used and must specify a time-frame for which DSecets may be accepted by the

Secfault Security Confidential Page 13 of 35

Chapter 4

server. Default values aligning with the security needs of the respective account type should be
preselected, e.g. the DSecret expiry after 24 hours for personal accounts and considerably shorter
time frames for business related accounts. The user should be informed that the security advantage
of the activated MFA highly correlates to the configured duration.

Reproduction Steps

Activate MFA for an account of an arbitrary type and setup a new client for it. Note that MFA via
TOTP or a security key is required to setup the client. Now lock the client or reboot the device and
observe that MFA is no longer required for unlocking 1Password including a connection to the
backend afterwards.

For the macOS client, the mentioned DSecret can be found in the login keyring. Note the time of
registering the new client and search for an entry modified at this time. The entry name should be
prefixed with 1Password:dsecret- and the item does not expire.

Secfault Security Confidential Page 14 of 35

Chapter 4

4.4 Master Password and Secret Key in Export Files
Summary

Type Location Severity
Design 1Password for Mac Medium

Technical Description

To get a general understanding of the different import formats supported by the macOS client,
export files were generated for the used test accounts. While reviewing their contents it was found
that some export files contain the account's master passwords and for 1pux files also its secret key.
This behavior seems to be caused by the default items generated by 1Password for each new
personal or family account. Those are stored in a vault named "Personal" or "Private" and contain
among others a login item named "1Password Account (<user/family name>)". This stores the
account's master password and secret key:

Figure 1 - 1Password Account Login Item

This behavior might pose a security risk, since an attacker with access to an export file (currently
solely plain text formats are supported) will not only gain access to the stored content, but also to

Secfault Security Confidential Page 15 of 35

Chapter 4

future items stored or shared to the account by having the ability to fully hijack it.

Recommended Action

It should be considered to remove this item from exports by default. It could be included on demand
of the user with a appropriate security clarification.

Reproduction Steps

In order to reproduce this issue, please create a new personal or family account and login for the
first time via the Web UI or one of the offered clients. Note the existence of a "Personal" or
"Private" vault and the "1Password Account (<user/family name>)" login item that is stored in it. Its
detail view should confirm the availability of the master password and secret key as shown in
Figure 1.

Secfault Security Confidential Page 16 of 35

Chapter 4

4.5 Unsafe chown Call
Summary

Type Location Severity
Code apple/macOS/

FileManager+Authorization.swi
ft

High

Technical Description

While reviewing the new installer implementation, it was found that the 1Password Updater, which
is installed alongside the main application, exposes a weakness that allows local attackers to gain
elevated privileges by exploiting an insecure call to the chown binary.

The following excerpt from FileManager+Authorization.swift illustrates the problem:

 private func moveToPathWithForcedAuthorization(at source: URL, to
destination: URL) -> Bool {
 let src = source.path
 let dst = destination.path

 let tmp =
destination.deletingPathExtension().appendingPathExtension("old").appendingPath
Extension(destination.pathExtension).path

 var sb = stat()
 if stat(src.seriallizeToC(), &sb) != 0 || stat(tmp.seriallizeToC(), &sb)
== 0 {
 return false
 }

 setenvWithString("SRC_PATH", src, 1)
 setenvWithString("DST_PATH", dst, 1)
 setenvWithString("TMP_PATH", tmp, 1)

 var shellCommand: String?

 if FileManager.default.fileExists(atPath: dst) {
 shellCommand = String(format: """
 /bin/rm -rf \"$DST_PATH\" &&
 /bin/mv -
f \"$SRC_PATH\" \"$DST_PATH\" &&
 /usr/sbin/chown -R %d:
%d \"$DST_PATH\"
 """,

Secfault Security Confidential Page 17 of 35

Chapter 4

 sb.st_uid, sb.st_gid)
[...]
 if let shellCommand = shellCommand {
 return runShellWithAuthorization("1Password needs to update some of
its files, which requires the password you use to log in to your Mac.",
shellCommand)
 }

It can be observed that the code first obtains information on the current file owner of the source
directory, and then - after invoking mv - recursively changes the ownership of the destination
directory to match the source file owner. This operation is performed with elevated privileges, as
indicated by the runShellWithAuthorization call.

This is problematic insofar as the source directory could contain a hard link to a file that is owned
by another user, such as /etc/sudoers that is owned by root. Changing ownership on such a link
would result in the file becoming writable by less privileged users.

The code path is triggered by the 1Password Updater implementation, which has been confirmed by
performing targeted dynamic tests.

Recommended Action

Secfault Security recommends to generally reconsider the shell-based implementation of the
updater routine. This is due to the fact that - based on prior experience - such implementations are
often hard to defend against various classes of attacks, including the described link-based attack, but
also other attack classes such as race conditions.

If this is not possible or not desired, it is recommended to at least not use chown for explicitly
changing file ownership. Rather, existing file permissions should be preserved by instructing the
respective utility to do so. In case of mv, this behavior should already be implicit.

Reproduction Steps

In order to reproduce this issue, please proceed as described below.

In a first step, please create a root-owned file /etc/sudoers.test, e.g., by sudo cp
/etc/sudoers /etc/sudoers.test.

Then please create a directory named 1Password.app and link /etc/sudoers.test to this
directory: mkdir ~/1Password.app ; cd ~/1Password.app ; ln /etc/sudoers.test ..

Now please invoke the 1Password Updater as follows:

env path=~/1Password.app /Applications/1Password.app/Contents/XPCServices/OP
Updater Service.xpc/Contents/Helpers/1Password

Updater.app/Contents/MacOS/1Password Updater.

An authorization prompt should be shown. After confirming it, please observe that

Secfault Security Confidential Page 18 of 35

Chapter 4

/etc/sudoers.test is now owned by a regular, non-root user.

Secfault Security Confidential Page 19 of 35

Chapter 4

4.6 Insufficiently Authorized MFA Management
Summary

Type Location Severity
Code Web UI Medium

Technical Description

One of the test-cases for MFA management involved activating and deactivating MFA for some of
the available accounts. This functionality is solely available in the 1Password Web UI, where a
violation of security best practices was identified for disabling MFA.

The basic idea of optional MFA mechanism is addressing cases where users want to protect against
attackers who have gained access to the mandatory authentication factor. In the present setting, an
attacker with this knowledge and with access to an authenticated Web UI session can disable MFA
for the whole account and thereby any client. Note the security issue documented in section 4.3 that
enlarges the risk of getting access to an authenticated UI session provided that the password is
already known.

Further dynamic tests showed, that not only the routines for disabling MFA are affected, but also the
request handlers allowing to replace or add a second factor. This way an attacker could add an
alternative second factor for the account or replace an existing one. This might pass unnoticed by
the actual user, since on a login based on DSecrets no MFA option overview will be shown, nor was
an notification email received on replacing a TOTP factor.

A similar situation as on disabling MFA was observed when changing the account's email address.
For this, the user needs to enter the code sent for verification to the new email address together with
the master password. This is of relevance in the MFA context for accounts using MFA via codes
sent to the account's email address.

Recommended Action

Since disabling MFA must be regarded as a critical account management option, it should be
considered to authorize this action by all available authentication factors. At least, the deactivation
of MFA should require the proof of access to a valid second factor.

The same measures should be applied, whenever a second factor should be replaced, including
changes to the account's email address, or added.

Reproduction Steps

In order to reproduce this issue, please login to the Web UI using an arbitrary account that has MFA
enabled, but is not forced to do so by a superordinate business account. Open the drop-down menu

Secfault Security Confidential Page 20 of 35

Chapter 4

offered next to the account name in the upper right corner of the landing page. Navigate to "My
Profile" and select "More Actions -> Manage Two-Factor Authentication" in the left sidebar. Click
on "Turn Off Two-Factor Authentication" and enter the account password in the shown overlay:

Figure 2 - Password Promp on Disabling MFA

On successful password verification, the page confirms that MFA was turned off without requiring
any additional steps.

The replacement or creation of further second factors can be performed on the same Web page.
Please note the missing authorization checks and notification email.

Secfault Security Confidential Page 21 of 35

Chapter 4

4.7 Unsafe Client Storage of Secret Key
Summary

Type Location Severity
Design macOS Desktop App Medium

Technical Description

To simplify the unlock process, the account's secret key is stored by the client after its initial
submission and successful verification. Since the secret key is required to unlock the encrypted
database contents and can therefore not be covered itself by this protection mechanism, the question
arose how its storage is secured.

An inspection of the client's source code and database entries revealed, that the secret key is not
cryptographically protected. It was found to be obfuscated by a procedure defined inside the file
op-crypto/src/secret_key.rs that performs a bitwise xor with a constant string:

287 const OBFUSCATION_KEY: &[u8] = b"This is an obfuscation key used to
mask the secret key in the local database and nothing more. If this seems
interesting to you, come work with us :)";
288 pub(super) const OBFUSCATED_MARKER: &str = "obfus";
289
290 pub(super) fn obfuscate_key(secret_key: &SecretKey) -> String {
291 let str_form = secret_key.less_safe_human_readable_form();
292
293 let obfuscated: Vec<u8> = str_form
294 .bytes()
295 .zip(OBFUSCATION_KEY)
296 .map(|(c, k)| c ^ k)
297 .collect();
298
299 let mut encoded = op_encoding::hex(&obfuscated);
300 encoded.push_str(OBFUSCATED_MARKER);
301 encoded
302 }

The usage of this scheme was verified by inspecting the database contents. Those did contain
entries with the expected OBFUSCATED_MARKER suffix.

Recommended Action

1Password for Mac already makes use of the OS keychain to store secrets in different contexts.
Therefore it already supports a secured location for placing the account's secret key.
Correspondingly, the management procedures of the secret keys should be adjusted to make use of
this OS feature whenever available. This change should be applied to all client types, where a OS or

Secfault Security Confidential Page 22 of 35

Chapter 4

browser secure storage option might be applicable.

Reproduction Steps

In order to reproduce this issue, please setup a macOS client with at least one account that makes
use of password authentication.

Search for the SQLite database and open it using the following command line:

$ find . -iname 1password.sqlite -exec sqlite3 {}\;
1|23|
{"account_state":"A","account_template_version":3407873,"account_type":"B","acc
ount_version":15,"base_attachment_url":"https://
f.b5test.com/","base_avatar_url":"https://a.b5test.com/","sign_in_provider":
{"type":"sk","secret_key":"155b4446705b417035436e5623543d464e522c5f24340d212e3c
18225e56347323370d2e234b2d67obfus","enc_unlock_key":
{"cty":"b5+jwk+json","kid":"system_lock_protector","enc":"A256GCM","iv":"TLVltQ
pK4dEx_-7Q","data":"6tVhlOeVEsf0PBX5lcwmtHxxvs-ZIzZV49f6GhN407QpvQL5Y6bwVrK6E-
ba_m-
YDI4kEWmBmpMzQQJFKESEMqTkd2IRrD4Hke1_yyGjrrRvjlX3MJ5he_87fMikBh48dBM7GieUdXCPdB
fmGrCwhY4HVXJUttd3YvaOtxZDmcRpxjIMtoGWAmIxTc99siaJm-jktxs"}},"enc_srp_x":
{"cty":"b5+jwk+json","kid":"srpxkey","enc":"A256GCM","iv":"k4P7D-
rvxByTopdd","data":"SNCkhOLbG4efd4EubQzH2Xq2Hv4YxQfeQPRN68l5B8i4SW_is33iShpli-
vQ2dPe"},"sign_in_url":"https://
secfaultsecuritygmbh.b5test.com/","team_avatar":"","team_name":"Secfault
Security
GmbH","updated_at":1669653353,"user_avatar":"","user_email":"pentest1@secfault-
security.com","user_name":"Jennifer","user_keyset_version":24,"user_uuid":"NUND
LBN5FJFZFFWS6LYXYR3FGI","user_version":3,"acl":786433,"device_uuid":"rs2ptxeh2q
moueyc5d6tbjbb2u","freeze_at":1669648883,"billing_status":"F","storage_capacity
":25600,"storage_used":1,"account_template_language":"en-
US","enc_local_validation_key":{"cty":"b5+jwk+json","kid":"core-setting-
authkey-wrapper","enc":"A256GCM","iv":"YXJDG2zXVMRQbRNw","data":"yzyia5aWptZ-
zGv_Rtk6K5tpz76ACOA7c8vWuxdK1lWUC3ynkRYM6Fj_1qdD6eHH"}}|
IH4BDH3TM5DKNOIGLVJDDLDOSM

The above JSON entry contains the secret key in the secret_key field of the sign_in_provider
object. Note that the value of the secret_key field has the expected suffix obfus.

Secfault Security Confidential Page 23 of 35

Chapter 4

4.8 Import of References to Existing Vaults
Summary

Type Location Severity
Code Data Import Low

Technical Description

One of the most relevant security aspects in the context of the data import offered by the client, is
the separation of vaults and items created during this with respect to already existing data. Since
new vaults are created to store the imported data, it was investigated what options are offered to
reference or link other items. In this context a new feature supported by the browser extension was
identified, which allows to store information on the used login for web pages offering SSO
authentication, e.g. using social media accounts. This is achieved by adding special fields to the
login item that is otherwise only storing the Web page's URL.

In the JSON serialization of the resulting item in an 1PUX export one can see that both a vault
UUID and item UUID for the respective SSO login can be specified:

"sections": [
 {
 "title": "Saved on passport.alibaba.com",
 "name": "Section_76rzqdvqk2nixi3yjgvimudm7u",
 "fields": [
 {
 "title": "single sign-on",
 "id": "ybjp5f3bpl5dmw4gkqzk6e3gkq",
 "value": {
 "ssoLogin": {
 "provider": "google",
 "item": {
 "vaultUuid": "2gk4fuezacl72ybikd3mti7cci",
 "itemUuid": "rpg2krm4yuzh3vczrttwkqiw5q"
 }
 }
 },
 "indexAtSource": 0,
 "guarded": false,

In the implementation of the respective deserialization routines in the file
op-import-export/src/models/translation/onepux/v2.rs one can observe that the
information is copied literally from the imported data:

 855 SectionFieldValue::SsoLogin(attributes) => {

Secfault Security Confidential Page 24 of 35

Chapter 4

 856 op_model::SectionFieldValue::SsoLogin(attributes.map(|
attributes| {
 857 let item = attributes
 858 .item
 859 .map(|attributes| op_model::SsoLoginLinkedItem {
 860 vault_uuid:
VaultUuid::from_string(attributes.vault_uuid),
 861 item_uuid:
ItemUuid::from_string(attributes.item_uuid),
 862 });
 863
 864 op_model::SsoLoginAttributes {
 865 provider:
op_model::SsoLoginProvider::from_model_string(
 866 attributes.provider,
 867),
 868 item,
 869 }

Dynamic tests proved that this impression is correct and arbitrary existing vault and item UUIDs of
the same account can be specified. This way, a user importing a malicious 1PUX file could be
tricked to select an attacker-controlled login item for the specified Web page.

Further, the import can be used by an attacker to store a respective item to a shared vault of their
own account. Since the reference can point to any item in the same account, it can target non-shared
vaults of other users.

The likelihood of a successful attack is further increased, since the SSO account selection view of
the browser extension does not show information on the source vault (similar to the UI shortage
described in section 5.1):

Secfault Security Confidential Page 25 of 35

Chapter 4

Figure 3 - Selection View for SSO Accounts

Recommended Action

Similar to the solution applied for deserializing linked related items, the vault and item UUID
should be mapped to the freshly created vault and item UUIDs created during the import. This way,
no references pointing outside the new contents would be possible. In case such a mapping cannot
be found, e.g. because it pointed to vault note included in the import due to missing export
permissions, the reference should either be removed from the created item completely or the user
could manually select a login item that should be used for the Web page instead.

Reproduction Steps

In order to reproduce this issue, please proceed as described below.

 1 Use the browser extension to generate a login item with a "single sign-on" field by authenticating
to a Web page offering social media account logins, e.g. https://passport.alibaba.com.
Save both the utilized test SSO account and select it to be used for this page in future.

 2 Export the respective 1Password account to a 1PUX file.

Secfault Security Confidential Page 26 of 35

Chapter 4

 3 Extract the 1PUX file as a ZIP archive and open the export.data file in a text editor.

 4 Repeat step 2 and 3 with the account that should be attacked and must have at least one login
item, ideally in a shared exportable vault. Those will be denoted as target account and target
login item hereinafter.

 5 Perform a textual search in the second export.data file for the target login item and the
respective vault using their names. Note their UUIDs.

 6 Search for the SSO login item in the data of the first export. Now exchange the vaultUuid and
itemUuid JSON field values as shown above in the "Details" section with the noted UUIDs.

 7 Zip the contents of the first export after this modification to a file with the extension .1pux.

 8 Import the created archive to the target account.

 9 In the client of the target account search for the freshly created vault and the SSO login item in it.
Open its detail view and observe that the target login item is linked although it is in none of the
new vaults. The browser extension should now offer the login via the target item to the
respective Web page.

Secfault Security Confidential Page 27 of 35

Chapter 4

4.9 Vault Permission Preview Incorrect
Summary

Type Location Severity
Observation Web UI N/A

Technical Description

In the context of testing the new 1Password 8 data import feature, it was observed that shared vaults
can be excluded from exports for a Business account. As part of the vault permission settings, a
"Client Settings" area is displayed. Hereby, the client can be instructed to not include the respective
vault in an export file.

When using this setting, it was observed that the short permission and settings preview that is
shown before opening the actual management subview is incorrect. On unchecking the "Client
Settings -> Export items" box, the "Export" permission is still shown in the preview.

Figure 4 - Incorrect Permission Preview

The issue was found to be present across page reloads and new logins.

No direct security impact is considered to be entailed by the wrong preview of the export
permission. Since the Web UI was not part of the assessment's scope, the cause of this flaw was not

Secfault Security Confidential Page 28 of 35

Chapter 4

investigated. It might therefore be possible that it affects the display of other permissions, which
might result in undesired vault security settings.

Recommended Action

The reason for the inaccurate generation of the vault permission preview should be determined, to
resolve it in a manner that rules out similar flaws in the context of other access settings.

Reproduction Steps

In order to reproduce this issue, please login to an account privileged to configure vault access
permissions for a Business account via the Web UI. Navigate to the vault details page via the right
sidebar selecting "Vaults" and afterwards the respective target vault. The URL in the address bar
should have the path /vaults/details/<vault_uuid>.

Please note the permission preview that is shown for each entry in a "People" or "Group" row. The
permissions can be altered by clicking on the settings icon right beside the preview. Here select and
remove the "Export item" client setting and observe that it has no impact on the preview. Reload the
page or perform a new login to the account to verify that the display does not get updated.

Secfault Security Confidential Page 29 of 35

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 Vault Display for Favorites
On inspection of the data import feature, it was noticed that imported items are always stored in
freshly created vaults. This provides a clean separation between already existing items and imported
content, addressing several security aspects at once. While analyzing the solution for possible attack
scenarios, such as overwriting existing items, it was however found that the client feature allows for
marking items as favorites. This results in such items being listed in a separated overview.

For the MacOS client display of this list, it was observed that neither account nor vault information
is shown before a user actively selects the respective item. This way the likelihood of item
confusions is increased, which could lead to user mistakes especially in the context of business or
team accounts. Please also refer to issue 4.1 that outlines an attack path that could allow to mark
imported items a favorites.

5.2 CSV Balanced Quote Check
On importing a CSV file to the MacOS client, it is checked in a first step that the contained quotes
are balanced (implemented inside op-import-export/src/models/csv.rs in the function
check_balanced_quotes). It was noted that quotes escaped by a preceding backslash are not
considered as quote meta characters. This however omits situations where quotes are prefixed by an
even number of backslashes, whereby those escape themselves and must not be considered to
escape the quote.

To reproduce the issue import a CSV file with the following content and observe that it is not
rejected, although it contains an uneven number of not escaped quotes in a line:

Title,Url,Username,Password,OTPAuth,Favorite,Archived,Tags,Notes
\\"LoginJ,,someuser,somepw,,false,false,,

No direct security impact is considered to be introduced by this, since the login item was found to
be correctly parsed except for the Title field. It might however result in rendering legit CSV
import files unusable.

5.3 Backslashes in Items break CSV Export Files
According to the balance check performed on quotes contained in imported CSV files, the MacOS
client was found to generate broken CSV export files. This is caused by backslashes being copied to
the CSV export literally, when contained in an item, while the check considers those as escape

Secfault Security Confidential Page 30 of 35

Chapter 5

characters. It was observed that the CSV export of a item including the character sequence \" will
result in an unbalanced quotes error on import.

To retrace the issue create a login item with the title Title\" and create a CSV export for the
respective account afterwards. Now import this file and observe the displayed error message.

Secfault Security Confidential Page 31 of 35

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits reviewed the identified issues and
provided feedback, describing their assessment. In order to provide full transparency, this feedback
is included in the below sections.

6.1 Unprotected Item Fields in 1PIF2 Format (Finding 4.1)
1Password accepts this finding as a best practice issue given the impacted format is currently
unsupported. We will review this finding for implementation prior to when the format is slated to be
supported.

6.2 CSV Injection In Export (Finding 4.2)
1Password accepts this issue and will work to implement a fix in the future. We consider the issue
low severity given a malicious actor would only be able to affect a single client at a time and it
requires access to a vault the target user would then have to export the data from.

6.3 Questionable Security Advantage of DSecret MFA (Finding
4.3)

With 1Password, MFA is about device trust. MFA is not required upon every sign-in, but only once
on every new device that has been set up. As a result, considerations that apply to other MFA
implementations don’t necessarily translate to our MFA design. We believe that Secfault security
applied considerations that apply for other MFA implementations. However, since we are interested
in making MFA with 1Password more powerful than it is today, we have decided to accept this issue
as a low severity issue.

6.4 Master Password and Secret Key in Export Files (Finding
4.4)

1Password appreciates the observations made by Secfault within this finding and we do believe
users should be made aware these items are included in their export. The finding itself falls into a
best practice classification and would be considered as a product enhancement in the future.

6.5 Unsafe chown Call (Finding 4.5)
We accepted this issue and have implemented a fix.

6.6 Insufficiently Authorized MFA Management (Finding 4.6)
With 1Password, MFA is about device trust. MFA is not required upon every sign-in, but only once

Secfault Security Confidential Page 32 of 35

Chapter 6

on every new device that has been set up. As a result, considerations that apply to other MFA
implementations don’t necessarily translate to our MFA design. We believe that Secfault security
applied considerations that apply for other MFA implementations. We are generally interested in
making MFA with 1Password more powerful than it is today, but within restrictions of current
product features we have decided not to accept this finding.

6.7 Unsafe Client Storage of Secret Key (Finding 4.7)
1Password does not accept this finding. The Secret Key is meant to add entropy to 1Password's
encryption for data stored on 1Password's servers. Locally on devices, your account password
protects access to your vaults. See the 1Password Security Design Whitepaper under the section
titled "Locally exposed Secret Keys" for more information.

6.8 Import of References to Existing Vaults (Finding 4.8)
1Password accepts this issue and will address it in the future.

6.9 Vault Permission Preview Incorrect (Finding 4.9)
We agree with Secfault’s observation that this is a bug with no security impact. We’ve started
tracking this internally for a bug fix.

Secfault Security Confidential Page 33 of 35

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its exploitability/impact of a successful exploitation. The meaning of
the individual ratings are provided in the following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description
Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Severity
The severity of a vulnerability describes a combination of the likelihood of attackers exploiting the
vulnerability, and the impact of a successful exploitation.

Severity Rating Description
Not Exploitable This finding can most likely not be exploited.

Low The vulnerability is either hard to exploit (e.g., because a successful
exploitation requires significant prerequisites) or its consequences can be
considered benign.

Medium The vulnerability can be exploited (possibly under certain preconditions) and a
successful exploit can be used to at least partially bypass the security
guarantees of the solution.

High The vulnerability can be exploited easily and a successful exploit bypasses one
of the core security properties of the solution.

Critical The vulnerability can be exploited easily and a successful exploit can be used
to compromise systems beyond the scope of the analysis.

Secfault Security Confidential Page 34 of 35

Chapter 8

8 Glossary

Term Definition
AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

CSV Comma Separated Value

GCM Galois Counter Mode

JSON JavaScript Object Notation

MDM Mobile Device Management

MFA Multi-Factor Authentication

OS Operating System

OWASP Open Web Application Security Project

SSH Secure Shell

SSO Single Sign-On

TOTP Time-based One-Time Password

URL Uniform Resource Locator

UUID Universally Unique Identifier

ZIP ZIP (compressed archive file format)

Secfault Security Confidential Page 35 of 35

	1 Executive Summary
	2 Overview
	2.1 Target Scope
	2.1.1 Critical User Flows
	2.1.2 MacOS Specific Features
	2.1.3 1Password 8 Added Features

	2.2 Test Procedures
	2.3 Project Execution

	3 Result Overview
	4 Results
	4.1 Unprotected Item Fields in 1PIF2 Format
	4.2 CSV Injection In Export
	4.3 Questionable Security Advantage of DSecret MFA
	4.4 Master Password and Secret Key in Export Files
	4.5 Unsafe chown Call
	4.6 Insufficiently Authorized MFA Management
	4.7 Unsafe Client Storage of Secret Key
	4.8 Import of References to Existing Vaults
	4.9 Vault Permission Preview Incorrect

	5 Additional Observations
	5.1 Vault Display for Favorites
	5.2 CSV Balanced Quote Check
	5.3 Backslashes in Items break CSV Export Files

	6 Customer Feedback
	6.1 Unprotected Item Fields in 1PIF2 Format (Finding 4.1)
	6.2 CSV Injection In Export (Finding 4.2)
	6.3 Questionable Security Advantage of DSecret MFA (Finding 4.3)
	6.4 Master Password and Secret Key in Export Files (Finding 4.4)
	6.5 Unsafe chown Call (Finding 4.5)
	6.6 Insufficiently Authorized MFA Management (Finding 4.6)
	6.7 Unsafe Client Storage of Secret Key (Finding 4.7)
	6.8 Import of References to Existing Vaults (Finding 4.8)
	6.9 Vault Permission Preview Incorrect (Finding 4.9)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Severity

	8 Glossary

