
Secfault SecuritySecfault Security

2023 1Password CLI Pentest

Security Assessment

Report

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 Agilebits

- hereafter called "Agilebits Inc dba 1Password" -

This document contains proprietary and confidential information of Secfault Security and the recipient. Publication or distribution
without prior written permission is forbidden.

Secfault Security

Chapter

Document History

Version Author Date Comment

0.1 Finn Westendorf 2023-05-05 First Draft

0.2 Maik Münch 2023-05-16 Additions

0.3 Jennifer Gehrke 2023-05-17 Additions

0.4 Gregor Kopf 2023-07-24 Added Customer Feedback

1.0 Gregor Kopf 2023-08-14 Final Version

Secfault Security Confidential Page 2 of 31

Chapter

Table of Contents
1 Executive Summary...4
2 Overview...5

2.1.1 Target Scope...5
2.1.2 Test Procedures..6

2.2 Project Execution...7
3 Result Overview..8
4 Results...9

4.1 Retest...9
4.1.1 Lax Parsing for Dotenv Files...9
4.1.2 Output of Escape Sequences..12
4.1.3 Race Condition in File Creation...14
4.1.4 Access to Parent Environment in op run..17
4.1.5 Missing Privilege Dropping in op run..19
4.1.6 Secret Data in Command Arguments...21
4.1.7 ToCToU Weakness in Windows Peer Verification...22

4.2 New Findings...23
4.2.1 Windows Peer Verification depends on File System Type...23

5 Additional Observations..28
5.1 Use of Deprecated Endpoints in CLI Item Share Command...28

6 Customer Feedback...29
6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)..29
6.2 Race Condition in File Creation (Finding 4.1.3)...29
6.3 Access to Parent Environment in op run (Finding 4.1.4)...29
6.4 Windows Peer Verification depends on File System Type (Finding 4.2.1).............................29

7 Vulnerability Rating..30
7.1 Vulnerability Types..30
7.2 Severity..30

8 Glossary...31

Secfault Security Confidential Page 3 of 31

Chapter 1

1 Executive Summary
Secfault Security was commissioned by Agilebits Inc dba 1Password with a retest of the security
issues identified in their Command-line tool (1Password CLI) in March 2022. In addition, new
features and commands, which are related to the CLI usage, were specified as subjects for further
inspections. The audit has been performed in the time frame from 2023-05-02 to 2023-05-17. This
document describes the results of the project.

Details on the project's scope and chosen testing approaches can be found in the sections 2.1.1 and
2.1.2. The results of the performed retests are listed in section 4.1. Four of the seven issues are
considered to be addressed properly, while two mitigations were found to be incomplete. The
inspection of one issue led to the discovery of a new related weakness that affects the IPC peer
verification on Windows and is documented in section 4.2.1. A bypass for the approach chosen to
prevent Time-of-check-to-time-of-use (ToCToU) attacks during the Authenticode signature
validation was detected when using special file system types. Apart from this, no new security
issues could be determined. One general recommendation related to the use of deprecated API
endpoints, as observed in the course of testing the new item sharing features, was added in section
5.

The reviewed codebase left a positive impression. The code is well-structured and readable and has
been implemented with security in mind.

Secfault Security Confidential Page 4 of 31

Chapter 2

2 Overview
1Password is a password manager product developed and maintained by Agilebits Inc dba
1Password Inc. The solution provides a secure place for customers to store and share various
passwords, software licenses, and other sensitive information in virtual vaults. Agilebits Inc dba
1Password tasked Secfault Security with a retest and inspection of new features related to the
1Password CLI offered for software developers. In section 2.1.1 of this document, a description of
the project's scope can be found. Section 2.1.2 provides details on the test procedures.

2.1.1 Target Scope

As part of the current security audit, seven issues identified during the project executed in March
20221 should be retested. Those correspond to the following sections of the original document:

• 4.1.1 Lax Parsing for Dotenv Files

• 4.1.2 Output of Escape Sequences

• 4.1.3 Race Condition in File Creation

• 4.1.4 Access to Parent Environment in op run

• 4.1.5 Missing Privilege Dropping in op run

• 4.1.6 Secret Data in Command Arguments

• 4.1.7 ToCToU Weakness in Windows Peer Verification

Secfault Security was further provided by Agilebits Inc dba 1Password with an open scope covering
various new features related to the CLI usage. Internal documentation was made available for more
complex aspects to enable Secfault Security to perform a selection of target topics themselves. This
was based on the expected risk and probability of implementation flaws. Precedence was given to
features that were not yet included in a security assessment.

The below aspects were communicated by Agilebits Inc dba 1Password as a basis for the project
scope:

• Rate limiting based on throttling token introduced for Service accounts

• Utilization of database read replicas

• CLI support for item sharing

• CLI command for generating SSH keys

• Change from optional to mandatory use of the internal cache

• New CLI account type: Service account (previously assessed)

1 https://bucket.agilebits.com/security/SecfaultSecurity_Report_OP_Security_Assessment_v1.0.pdf

Secfault Security Confidential Page 5 of 31

Chapter 2

• CLI plugin support (previously assessed)

The next section provides details on the analyzed topics and the extent of the performed tests.

2.1.2 Test Procedures

As in previous iterations, the overall project was executed using a white-box approach. This means
that source code, compiled binaries and technical documentation for the solution were provided
upfront by Agilebits Inc dba 1Password. Therefore, the solution has been analyzed by performing a
source code review in combination with targeted dynamic testing.

Secfault Security, in general, performs source code reviews in a manual fashion, i.e., without
relying on automated vulnerability scanners or similar tools. Besides identifying possible classical
implementation weaknesses, one main focus of the review was the identification of potential logic
problems. This requires an in-depth understanding of the solution's inner workings, which is best
achieved by a manual process. Given the overall good software quality, such an approach is
assumingly more effective.

Prior exposure to the source code in previous engagement was used to efficiently identify relevant
parts of the solution respective to the defined target scope and allowed for more in-depth review.

In addition to static analysis, dynamic tests have been performed in a targeted fashion. On the one
hand, this served the purpose of validating issues identified during the source code review. On the
other hand, dynamic tests were also performed to obtain a better understanding of the overall
solution and the interplay of its individual components. For example, the 1Password session
analyzer plugin for Burp Suite2 was used to analyze traffic generated by the CLI and web
application. Further, an internal CLI build allowing to send raw requests that was provided by
Agilebits Inc dba 1Password was utilized to validate implemented mitigations.

Being part of this assessment's scope, seven issues, identified in a previous audit3 performed by
Secfault Security in March 2022, were retested. During the retest it was identified that the issue
regarding Windows peer verification might not be fully addressed. More details on this issue can be
found in section 4.1.7 and 4.2.1 of this document.

Apart from the retest, the throttling token implementation was subject to an in-depth review. The
generation of throttling-related secrets and UUIDs was inspected for cryptographic issues, such as
using cryptographically insecure pseudo random number generators. Further, the throttling process
was evaluated with focus on token verification, e.g., ensuring token expiry, as well as potential
bypasses of the configured rate limits. Dynamic tests were performed to assess the general
effectiveness of this active defense mechanism. No issues were identified during the audit with
regard to this feature.

2 https://github.com/1Password/burp-1password-session-analyzer
3 https://bucket.agilebits.com/security/SecfaultSecurity_Report_OP_Security_Assessment_v1.0.pdf

Secfault Security Confidential Page 6 of 31

Chapter 2

Further, the item sharing functionality of the CLI tool was reviewed with focus on general
implementation flaws. For this, a static analysis as well as dynamic tests were performed, e.g., to
identify potential bypasses of potentially configured recipient allow lists. Additionally, the used API
endpoints were inspected with the aim to correlate them with the API endpoints used for example
by desktop applications. This revealed, that the CLI assumingly uses deprecated endpoints.
Although no direct security implications could be identified when reviewing the endpoints in
question, this fact has been documented as an additional observation in section 5 of this report for
the sake of completeness.

Service accounts were identified to be another interesting area and therefore were assessed during
this audit. Given the complex implementation and the fact that service accounts have been audited
in a previous assessment4 already, this feature could not be fully covered during project execution.
Therefore, a subset of interesting areas was selected for inspection. First and foremost, the addition
of rate limiting and the accompanying addition of a throttling key to the service account credentials
has been evaluated. Service account creation and secret generation were analysed statically with
focus on cryptographic flaws. Further, dynamic testing was used to evaluate the general
implementation. These tests included for example privilege escalations and token revocation. Please
note, that the service account feature could only be covered briefly, mainly focussing on the
addition of rate limiting. Thus, no general conclusion can be provided regarding this feature's
security posture.

In addition, the implementation of the new ssh generate CLI command was reviewed. This was

found to offer limited clear functionality, selecting strong cryptographic primitives with regards to
random generation and the supported SSH key types. No concerns raised during the inspection.

2.2 Project Execution
The project has been executed in the time frame from 2023-05-02 to 2023-05-17.

The consultants assigned to this project were:

• Finn Westendorf

• Maik Münch

• Jennifer Gehrke

• Gregor Kopf

4 https://bucket.agilebits.com/security/378.2202.Recurity_Labs-Report-Service_Accounts-v1.2.pdf

Secfault Security Confidential Page 7 of 31

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Severity Status

Lax Parsing for Dotenv Files 4.1.1 Code Low Partially Fixed

Output of Escape Sequences 4.1.2 Code Low Closed

Race Condition in File Creation 4.1.3 Code Low Partially Fixed

Access to Parent Environment in op run 4.1.4 Code Low Won't Fix

Missing Privilege Dropping in op run 4.1.5 Code Medium Closed

Secret Data in Command Arguments 4.1.6 Code Low Closed

ToCToU Weakness in Windows Peer Verification 4.1.7 Code Medium Closed

Windows Peer Verification depends on File System
Type

4.2.1 Code Medium

Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Confidential Page 8 of 31

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 Retest
This section lists all issues that were identified during the CLI tool security audit in March 2022 and
were retested in the current assessment.

4.1.1 Lax Parsing for Dotenv Files

Summary

Type Location Severity Status

Code godotenv (third-party
dependency)

Low Partially Fixed

Technical Description

While reviewing the dotenv file parsing of the op inject command, it was found that the used

parser implementation is rather lax. A cursory inspection of the parser code5 revealed that - for
instance - the handling of comments does not appear to properly address situations where multiple
quotes occur in a nested fashion:

func parseLine(line string, envMap map[string]string) (key string, value
string, err error) {

if len(line) == 0 {
err = errors.New("zero length string")
return

}

// ditch the comments (but keep quoted hashes)
if strings.Contains(line, "#") {

segmentsBetweenHashes := strings.Split(line, "#")
quotesAreOpen := false
var segmentsToKeep []string
for _, segment := range segmentsBetweenHashes {

if strings.Count(segment, "\"") == 1 || strings.Count(segment,
"'") == 1 {

if quotesAreOpen {

5 https://github.com/joho/godotenv/blob/c40e9c6392b05ba58e6fea50091ce35a1ef020e7/godotenv.go#L100

Secfault Security Confidential Page 9 of 31

Chapter 4

quotesAreOpen = false
segmentsToKeep = append(segmentsToKeep, segment)

} else {
quotesAreOpen = true

}
}

if len(segmentsToKeep) == 0 || quotesAreOpen {
segmentsToKeep = append(segmentsToKeep, segment)

}
}

line = strings.Join(segmentsToKeep, "#")
}

It can be observed that the code would treat a string like "'" # foo as one actual literal - contrary

to what one might expect.

An attacker with the ability to create dotenv files might abuse this behaviour in order to craft
seemingly benign dotenv files, which would inadvertently leak secret information into unrelated
environment variables.

It should be noted that no in-depth review of the parser implementation has been performed and that
the presence of other issues can hence not be ruled out.

Recommended Action

In order to address this issue, a first step could be to perform a more in-depth review of the used
dotenv parser in order to identify further possible issues. All identified problems should
subsequently be reported upstream in order to be addressed by the developers of the library.

Reproduction Steps

In order to reproduce this issue, please install godotenv and create a dotenv file /tmp/test.env

with the following contents:

PASSWORD=super secret
USERNAME='as908dzf/"' # Has to be quoted, because we hard-code it. When using
variable references like $PASSWORD, this is not needed

Then, please use a command as shown below to observe the behaviour of the parser:

 go/bin/godotenv -f /tmp/test.env env𝝺
USERNAME='as908dzf/"' # Has to be quoted, because we hard-code it. When using
variable references like super secret, this is not needed
PASSWORD=super secret

It can be observed that the USERNAME variable - contrary to what one might expect - not only

contains the full comment, but also exposes the contents of the PASSSWORD variable within this

Secfault Security Confidential Page 10 of 31

Chapter 4

comment.

Retest Status

The new parser implementation appears to be in
op-cli/command/refsyntax/dotenv/dotenv.go. Dynamic tests showed that the parser still has

troubles with quoting. Consider a .env file like this:

FOO=f'oo
BAR=baz'

Using bash --posix, the above snippet would create a single variable $FOO:

echo $FOO
foo BAR=baz

op, however, interprets this as two variables, f'oo and baz' respectively. Another observation was

that comments are not handled correctly, e.g., FOO=bar#, which is parsed as "bar" in op but as

"bar#" in shells.

This means that there is still potential for certain attacks.

Further, it was found that similar code to the originally used vulnerable godotenv library now

appeared in b5-b5app-release-1507/tools/ci/b5envchecker/loader.go.

Secfault Security Confidential Page 11 of 31

Chapter 4

4.1.2 Output of Escape Sequences

Summary

Type Location Severity Status

Code CLI Tools Low Closed

Technical Description

While reviewing the implementation of the CLI tools, it was found that the op tool generally does

not filter terminal escape sequences when writing data to stdout. An attacker with the ability to

control (parts of) the tool's output could therefore inject malicious escape sequences.

Depending on the used terminal emulator, this can lead to a number of possible issues. Historically,
there have been code execution vulnerabilities in a number of terminal emulators, such as xterm or
more recently in xterm.js6.

However, even without such issues, outputting untrusted escape sequences can result in potential
problems. Attackers could for instance use escape sequences in order to display misleading
information to the user. One obvious example of such misleading information could be fake
password prompts, aiming to trick the user into entering sensitive passwords into their command
shell.

Recommended Action

In order to address this issue, it is recommended to filter terminal escape sequences when the op

tool interacts with a tty.

Reproduction Steps

In order to demonstrate the presence of the problem, the following Python script can be used to
generate a file named poc.json, which contains a sequence of terminal escape sequences aiming to

trick a user into entering their password:

import sys

with open('poc.json', 'w') as f:
 f.write(u"\u001b[?25l\u001b[2J\u001b[1;1HPlease enter your password:")
 for i in range(1000000):
 f.write(u"{}\u001b[50D".format(' '*50))

The file poc.json can subsequently be added to a vault as shown below:

$ op document create poc.json

6 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-0542

Secfault Security Confidential Page 12 of 31

Chapter 4

After adding the file, the target user could be tricked into displaying the file:

$ op document get poc.json

The escape sequences in the above PoC code will display a password prompt, which could make the
user assume they are still interacting with the op tool - while in reality, they would enter their

password into their command shell, which in turn might for instance save it in the history file.

Retest Status

While dynamically retesting this issue, it was found that \x1b (ESC) characters were removed from

the output and the rest of the escape sequences are therefore now rendered in a secure way in the
terminal.

This results from filtering unprintable characters in the function FilterUnprintable defined in

core/input/userinput.go and utilized by the CLI's IO interface

(op-cli/command/opio/io.go):

func FilterUnprintable(p string) string {
charFilter := func(r rune) rune {

if unicode.IsGraphic(r) || unicode.IsSpace(r) {
return r

}
return -1

}
return strings.Map(charFilter, p)

}

Accordingly, this issue is considered to be closed.

Secfault Security Confidential Page 13 of 31

Chapter 4

4.1.3 Race Condition in File Creation

Summary

Type Location Severity Status

Code op-cli/command/opio/
file.go

Low Partially Fixed

Technical Description

The CLI tools offer a number of ways for creating files. For instance, the op inject command can

be used to parse template files, fill in secret information and create new files. While reviewing the
file creation logic in op-cli/command/opio/file.go, it was identified that the implementation of

CreateFile contains a number of possible race conditions. Further, it also does not appear to

properly consider symbolic links.

Please consider the below excerpt from the code:

func CreateFile(name string, fileMode os.FileMode, io Stdinout, force bool)
(io.WriteCloser, error) {
 var file *os.File
 _, err := os.OpenFile(name, os.O_WRONLY, fileMode)
 if err == nil {
 // Return error when in pipe
 if io.IsOutputPiped() && !force {
 return nil, fmt.Errorf("file %s already exists", name)
 }

 if !force {
 prompt := fmt.Sprintf("File %s already exists, overwrite it? [Y/n] ",
name)
 if ok, _ := input.ProcessYesNoReturnPromptRW(prompt, io.TTYOrStdin(),
os.Stderr); !ok {
 fmt.Println("Aborting.")
 return nil, ErrAborted
 }
 }
 // This is necessary in order to wipe the contents of the previously
existing file.
 file, err = os.Create(name)
 if err != nil {
 return nil, fmt.Errorf("could not overwrite file %s: %s", name, err)
 }

 } else if os.IsNotExist(err) {
 file, err = os.Create(name)

Secfault Security Confidential Page 14 of 31

Chapter 4

 if err != nil {
 return nil, fmt.Errorf("could not create file %s: %s", name, err)
 }
 } else {
 return nil, fmt.Errorf("could not open file %s: %s", name, err)
 }

 err = file.Chmod(fileMode)
 if err != nil {
 return nil, fmt.Errorf("could not set permissions on file at %s: %s",
name, err)
 }
 return file, nil

It can be observed that the code first checks if the target file already exists. If it exists, it prompts
the user whether to overwrite the existing file. Subsequently, it clears the file's contents and changes
the file permissions. It should be noted that these operations are not performed in an atomic manner.
For instance, the target file could be created just after the code checks for its existence.
Furthermore, if the target file is a symbolic link, the code could write files to unintended locations.
Depending on the respective environment, this might turn into an exploitable condition.

One obvious example of such an exploitable condition leverages the missing check for a symbolic
link: Assume that a legitimate user Alice uses the op inject command to create a file named

/tmp/foo. The attacker, Bob, knows about this and creates a symbolic link /tmp/foo beforehand.

The symbolic link points to Alice's ~/.bashrc or a similar sensitive configuration file. Alice now

runs the op inject command. As the target of the symbolic link already exists, the code will

prompt her to overwrite the file /tmp/foo. She confirms this prompt and thereby accidentally

overwrites her ~/.bashrc.

In order to improve the attack, Bob might attempt to create the symbolic link /tmp/foo directly

after the code checked for the file's presence. In this case, no prompt would be shown to Alice.

It should be noted that the above example relies on the fs.protected_symlinkssysctl variable

being set to zero. However, on the one hand the value of this variable is not under the control of the
analyzed codebase. On the other hand, more involved attacks, which do not rely on
fs.protected_symlinks being set to zero, cannot fully be ruled out.

Recommended Action

In order to address this issue, the following approach for creating a file is recommended:

 1 Attempt to open the file using the O_CREAT|O_EXCL|O_NOFOLLOW flags, while directly passing

the desired file permissions as well

 2 When the result of the above operation is EEXIST, prompt the user to overwrite the file. In case

of ELOOP, inform the user about the fact that a symbolic link has been detected and abort the

Secfault Security Confidential Page 15 of 31

Chapter 4

process

 3 If the user confirms, unlink the file and re-start the process at step 1

Reproduction Steps

This finding has been identified in a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps are provided.

Retest Status

It was found that the updated source code does not reject directories in the given file path that are a
symbolic link. This means that the described attack scenario can still be applied on a directory basis.
The situation changes in so far that the filename part of the output path has to match the filename of
the finally written file. The rest of the location, however can by hidden from the user.

Consider the following steps for Unix to create or overwrite a file in the home directory of a user:

 1 Create a new system user with the command sudo useradd otheruser

 2 Switch contexts using sudo su - otheruser

 3 Create a symbolic link to the home directory of the op user via ln -s /home/<op_user>
/tmp/safedir

 4 Switch back to the attacked op user context

 5 Execute echo whatever | op inject -o /tmp/safedir/somefile

 6 Observe the created file and its contents with the path /home/<op_user>/somefile

The approval prompt can no longer be bypassed by an attacker by exploiting a race condition, since
the file is created by the same system call that is used to check its presence.

It should further be noted, that an existing empty directory provided as output path would be deleted
by the call to os.Remove used in the implementation on Unix systems.

Secfault Security Confidential Page 16 of 31

Chapter 4

4.1.4 Access to Parent Environment in op run

Summary

Type Location Severity Status

Code op-cli/command/run.go Low Won't Fix

Technical Description

The op run command allows users to start processes, passing secrets stored in 1Password via

environment variables. In order to prevent the started process from directly interacting with the
running OP8 instance, the code removes a number of sensitive environment variables prior to
executing the child process.

However, it should be noted that the started child process could still be able to obtain such
environment variables from its parent process by reading /proc/<ppid>/environ. This could

allow malicious child processes to interact with the running OP8 instance.

Recommended Action

In order to address this issue, the PR_SET_DUMPABLE attribute of prctl could be used to make the

op process inaccessible by its child processes.

Reproduction Steps

In order to reproduce this issue, please use the following Python script:

#!/usr/bin/env python3

import os

print("My environment:")
for e in os.environ:
 if 'OP_SESSION' in e: print(e)

stat = open("/proc/self/stat").read()
ppid = stat.split(" ")[3]
print("ppid = " + ppid)

penv = open("/proc/" + ppid + "/environ").read()
entries = penv.split('\0')
print("Parent's environment:")
for e in entries:
 if 'OP_SESSION' in e: print(e)

When started with op run, the script should first display the environment variables it can directly

access. Please note that the OP_SESSION variable is not set. However, by reading the environment of

Secfault Security Confidential Page 17 of 31

Chapter 4

its parent process, the script can still access the contents of the OP_SESSION variable, as the below

excerpt illustrates:

 op run python poc.py𝝺
My environment:
GNOME_DESKTOP_SESSION_ID
DESKTOP_SESSION
ppid = 2740520
Parent's environment:
DESKTOP_SESSION=regolith
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
OP_SESSION_secfaulttest1=nveh5yNn4NzHQLbPrVm6vQOQf-ch8o0ZoND_GOGPzk8

Retest Status

This issue has been addressed by removing the feature to filter environment variables. Dynamic
tests verified this.
 Agilebits Inc dba 1Password 's Response:

We've investigated this finding and noted that our attempt to filter out
CLI specific environment variables was ineffective and set the wrong
expectations. As a result, version 2.0.1 of the 1Password CLI no longer
attempts to filter out the parent environment.

This issue is therefore set to the state "Won't Fix".

Secfault Security Confidential Page 18 of 31

Chapter 4

4.1.5 Missing Privilege Dropping in op run

Summary

Type Location Severity Status

Code op-cli/command/run.go Medium Closed

Technical Description

While reviewing the implementation of the op run command, it was found that the op tool does not

drop its privileges prior to executing its child process. For enabling the new "Biometric Unlock"
feature on Linux, the op binary belongs to the group onepassword-cli and has the setgid flag set.

This means that the binary will have its group set to onepassword-cli even if it is started by a user

who is not a member of this group. This mechanism serves the purpose of being able to identify the
binary when it communicates with OP8 via a Unix socket.

The fact that the op binary does not drop its privileges however means that processes started by op

run will also have the group onepassword-cli, which could enable them to directly interact with

the running OP8 instance via its Unix socket.

Recommended Action

During the execution of the project, the issue was communicated to Agilebits Inc dba 1Password,
who stated that the issue has already been addressed by dropping privileges in the op process.

Reproduction Steps

In order to demonstrate the presence of this issue, the following command can be used:

op run -- id -g --name

The output of the id command started via op run indicates, that the child process indeed belongs to

the onepassword-cli group.

Retest Status

Dynamic tests showed, that the output of id -g --name and op run -- id -g

--name command is now identical. The code was found to set the effective group id when the

program starts, to drop its privileges.

Note the below excerpt of the op-cli/desktopapp/ipc/processprivilege/linux.go file:

func Drop() {
lock.Lock()
defer lock.Unlock()

effectiveGID := os.Getegid()

Secfault Security Confidential Page 19 of 31

Chapter 4

realGID := os.Getgid()
if effectiveGID != realGID {

savedSetGID = effectiveGID
if err := syscall.Setegid(realGID); err != nil {

// According to the Linux kernel documentation, this syscall
should not fail if provided with the real

// group ID.
panic(fmt.Errorf("setegid() drop: %s", err))

}
}

}

Then, when needed for IPC authentication, it restores the saved group ID from the savedSetGID

variable, as depicted in the excerpt from the connect function defined in

op-cli/desktopapp/ipc/ipc_unix.go:

func connect(ctx context.Context) (net.Conn, error) {
runtimeDir := os.Getenv("XDG_RUNTIME_DIR")
if runtimeDir == "" {

runtimeDir = fmt.Sprintf("/run/user/%d", os.Getuid())
[...]

processprivilege.Restore()
conn, err := dialer.DialContext(ctx, "unix", socketPath)
processprivilege.Drop()

The Restore function was found to be used solely in this context, therefore the issue is considered

"Closed".

Since other platforms do not require the assignment of special permissions to the CLI binary, the
aspect is considered to affect only Linux installations.

Secfault Security Confidential Page 20 of 31

Chapter 4

4.1.6 Secret Data in Command Arguments

Summary

Type Location Severity Status

Code op-cli/command/
signin.go

Low Closed

Technical Description

While reviewing the implementation of the op CLI tool, it was found that the op signin command

accepts possibly sensitive information via command line arguments. The syntax for invoking the
command is signin [<sign_in_address> [<email_address> [<secret_key>]]], which

indicates that the secret_key for a user account could be provided on the CLI. This might leak the

secret key info the user's shell history, as well as in the system's process list (e.g., accessible via the
ps command).

Recommended Action

In order to address this issue, it is recommended to at least inform users about the potential risks of
passing data as command arguments. If using command arguments is required for convenience, it
could be advisable to process such arguments only if a specific flag (such as --insecure) has been

provided.

Reproduction Steps

In order to reproduce the issue, please use the op signin command, providing the secret_key as a

parameter. Then, please inspect the process list of the system, as well as the respective user's shell
history file.

Retest Status

When using op signin the CLI requests the secrets via stdin now. The password is not rendered

when typed in by the user. No sensitive info is ever passed by the command line, which means this
issue was addressed. The same is true for other sensitive actions, i.e., op account add.

Secfault Security Confidential Page 21 of 31

Chapter 4

4.1.7 ToCToU Weakness in Windows Peer Verification

Summary

Type Location Severity Status

Code CLI Tools Medium Closed

Technical Description

The Windows CLI tools connecting to a named pipe to communicate to the main application are
verified based on Authenticode signatures. The signature of the executable is checked and its issuer
is ensured to belong to AgileBits. This procedure consists of multiple steps:

 1 First, the PID of the connecting process is determined using the API function
GetNamedPipeClientProcessId

 2 The execution path of the process is requested by a call to QueryFullProcessImageNameW

 3 The file at the execution path is opened

 4 The execution path is provided as input to WinVerifyTrust to perform the Authenticode

verification

 5 The subject of the signature issuer, as retrieved from the trust store, is checked to belong to
AgileBits

As known to Agilebits Inc dba 1Password this validation steps might be affected by Time-of-check-
to-time-of-use (ToCToU) problems. For this reason, step 3 was implemented. It should lock the
respective file, to prevent it from being renamed and overwritten before it is read as part of step 4
and 5. This should rule out that an attacker performs a connection with a malicious binary "A" and
renames the CLI tools binary to binary "A" (and binary "A" to something else) directly after step 2.
Thereby, the legitimate binary would be used in step 4 and 5 although it is not the actual executable.

The implementation of this approach, however, suffers from an implementation issue. It should be
noted here, that this perception was gained by a static code review and was not confirmed
dynamically.

The issue arises from the selection of the function std::fs::File::open7 for acquiring a file lock.

An inspection of its source code8 showed the internal utilization of std::fs::OpenOptions::open:

pub fn open<P: AsRef<Path>>(path: P) -> io::Result<File> {
 OpenOptions::new().read(true).open(path.as_ref())
}

A further cursory inspection of the documentation for the Windows std::fs::OpenOptions

7 https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.open
8 https://doc.rust-lang.org/stable/src/std/fs.rs.html#327-329

Secfault Security Confidential Page 22 of 31

Chapter 4

extension revealed the default sharing mode9 requested for the file:

By default share_mode is set to FILE_SHARE_READ | FILE_SHARE_WRITE |
FILE_SHARE_DELETE. This allows other processes to read, write, and delete/rename
the same file while it is open. Removing any of the flags will prevent other processes
from performing the corresponding operation until the file handle is closed.

As the implementation of std::fs::File::open does not explicitly use the function

std::os::windows::fs::OpenOptionsExt::share_mode to clear all flags (note the example in

the documentation10), it is expected to utilize the mentioned defaults. As a result, it should still be
possible to rename and overwrite the file after step 3.

On a successful attack, the connection of an attacker-controlled binary would be accepted by the
named pipe to make requests on behalf of the CLI tools.

Recommended Action

Generally, a more in-depth analysis of the situation is recommended. The missing file locking
should be added by using appropriate open flags on the Windows platform.

Reproduction Steps

This issue has been identified during a static source code review and has not been reproduced
dynamically. Hence, no reproduction steps can be provided.

Retest Status

During the execution of the retest, it was found that the originally reported issue has been
addressed. However, while performing the retest, another issue could be identified, which is
described in section 4.2.1 of this document.

4.2 New Findings
The below sections document new security issues observed during the assessment.

4.2.1 Windows Peer Verification depends on File System Type

Summary

Type Location Severity

Code CLI Tools Medium

Technical Description

As part of the retest performed in the course of the assessment, the verification process utilized for

9 https://doc.rust-lang.org/stable/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode
10 https://doc.rust-lang.org/stable/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode

Secfault Security Confidential Page 23 of 31

Chapter 4

processes, such as the CLI tools, connecting to the main application was once again inspected.
While the original implementation flaw was addressed as recommended, dynamic tests revealed
another fundamental issue in the chosen approach.

The legitimacy of the connecting process is ensured by the means of Authenticode signatures. For
this purpose, the file data of the respective binary must be provided to the respective Windows API
function. Accordingly, the source file of the relevant process must be determined and read at a step
previous to the actual signature verification. Without special precautions this would be prone to
Time-of-check-to-time-of-use (ToCToU) attacks. Agilebits Inc dba 1Password was found to be
aware of this risk and implemented a measure based on Windows file locking:

 1 The file path of the process binary is determined by a call to QueryFullProcessImageNameW

 2 The file is locked except for read-only operations

 3 The file path of the process binary is again determined and compared to the result of step 1

 4 The verification process is started

The third step is considered to be introduced to prevent a ToCToU issue, where the attacker replaces
the file at the respective path location between step 1 and 2.

Taking into account the generally poor bonding between processes and the respective binary file as
stored in the file system, dynamic tests were performed to examine the updating of the file path, in
case of file system modifications. During this, it was observed that both the updating of the path
information as well as the file locking in general depend on the involved file system type. On NTFS
the expected behavior could be observed, while binaries accessed via Samba based file shares were
not protected by the described routine against modification on the host system.

Since remote shares are regularly used, especially by Windows users, it is considered feasible to
trick for example business customers to start a malicious binary made available this way. On
starting it, the executable would connect to the named pipe exposed by the Agilebits Inc dba
1Password main application. The attacker can afterwards exchange the binary at the remote location
determined in step 1 against an application signed by Agilebits Inc dba 1Password, e.g. the legit
CLI tools. Since both step 2 and 3 take no effect in this scenario, the exchange can happen at any
point before the file contents are read and passed to the Authenticode API. This way, the verification
will succeed while the named pipe can still be accessed by the malicious binary.

It should be noted that the effect of the described ToCToU attack in its entirety was not verified by
dynamic tests.

Recommended Action

It should be determined which file system types actually guarantee to update the information
obtained by the QueryFullProcessImageNameW API call and implement mandatory file locking

preventing content overwrites and file deletions. Afterwards the verification process should be

Secfault Security Confidential Page 24 of 31

Chapter 4

altered to reject the respective pipe access, if the path determined in step 1 points to non supported
file system type. The comparison in step 3 should be adjusted accordingly to detect any interim
changes to the file system type.

Reproduction Steps

The dynamic tests were performed using a Samba 4.15.13 share hosted on Linux.

The below Rust test programs were compiled with Cargo adding the following lines to the
Cargo.toml configuration:

[dependencies]
winapi = { version = "0.3.9", features = ["winbase"] }

Execute the below program after substituting the <targe_file_path> place holder twice. First

pointing to a file stored using NTFS and afterwards to a file on the mounted Samba share.

use std::{
 thread::sleep,
 time::Duration,
 fs::OpenOptions,
 os::windows::fs::OpenOptionsExt,
};

fn main() {
 let mut open_options = OpenOptions::new();
 let open_options = open_options
 .read(true)
 .share_mode(winapi::um::winnt::FILE_SHARE_READ);

 if let Ok(_) = open_options.open("<targe_file_path>") {
 println!("File should be locked!");
 sleep(Duration::new(30,0));
 }
 else {
 println!("Did not get lock!");
 }
}

During the 30 seconds that the file will be locked, try to change the contents or delete/rename the
file. Note that for the NTFS location, these actions will be refused. However, in the case of the
remote share, the host can still move the file and change its contents by directly accessing the
underlying directory without using Samba.

The next program shows that the binary path location will not be updated in the result of the
QueryFullProcessImageNameW function, when the host is moving the file in the shared directory.

use std::{
 ffi::OsString,

Secfault Security Confidential Page 25 of 31

Chapter 4

 os::windows::ffi::OsStringExt,
 thread::sleep,
 time::Duration,
};
use winapi::{
 um::{
 processthreadsapi::OpenProcess,
 winbase::QueryFullProcessImageNameW,
 winnt::PROCESS_QUERY_LIMITED_INFORMATION,
 },
};

fn file_path() {
 let pid = std::process::id();
 let mut buffer = [0u16; 1024];
 let mut blen = buffer.len() as u32;
 let handle = unsafe { OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, 0,
pid) };
 unsafe { QueryFullProcessImageNameW(handle, 0, buffer.as_mut_ptr(),
&mut blen); };

 let len = blen as usize;
 if len <= buffer.len() {
 if let Ok(path) = OsString::from_wide(&buffer[..len]).into_string()
{
 println!("Path: {}", path);
 }
 else{
 println!("Did not work");
 }
 }
}

fn main() {
 file_path();

 sleep(Duration::new(30,0));
 println!("I'm awake!");

 file_path();
}

Place the build executable in the shared directory on the host and ensure that its execution is
permitted by setting the correct access rights. Now, execute it on the Windows machine by
accepting the general warning shown for running executables from remote shares. During the 30
seconds between the calls to file_path function, rename the file on the Samba host and observe

that the changes are reflected in the respective directory on the Windows machine. Nevertheless, the

Secfault Security Confidential Page 26 of 31

Chapter 4

test program will output the same path twice. Executing the same binary in an NTFS location will
show the updated file path after renaming it.

Secfault Security Confidential Page 27 of 31

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 Use of Deprecated Endpoints in CLI Item Share Command
While reviewing the API endpoints used for the item sharing feature recently implemented in the
CLI tool, it was identified that the endpoints in question, e.g., /api/v3/itemshare are marked as

deprecated in the B5 source code. Using deprecated API endpoints is generally considered to be bad
practice and should be avoided, especially in recent implementations. As deprecated endpoints are
often not updated, they can be considered potential security risks.

Secfault Security Confidential Page 28 of 31

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits Inc dba 1Password reviewed the
identified issues and provided feedback, describing their assessment. In order to provide full
transparency, this feedback is included in the below sections.

6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)
1Password considers the findings resolved. While Secfault noted some caveats about our
remediation, any remaining concerns don't represent any significant risk. As a result we consider
these findings closed and fixed.

6.2 Race Condition in File Creation (Finding 4.1.3)
1Password considers the findings resolved. While Secfault noted some caveats about our
remediation, any remaining concerns don't represent any significant risk. As a result we consider
these findings closed and fixed.

6.3 Access to Parent Environment in op run (Finding 4.1.4)
We've investigated this finding and noted that our attempt to filter out CLI specific environment
variables was ineffective and set the wrong expectations. As a result, version 2.0.1 of the 1Password
CLI no longer attempts to filter out the parent environment.

6.4 Windows Peer Verification depends on File System Type
(Finding 4.2.1)

We accepted this issue and implemented a fix in the July 2023 release.

Secfault Security Confidential Page 29 of 31

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its severity. The meaning of the individual ratings are provided in the
following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description

Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Severity
The severity of a vulnerability describes a combination of the likelihood of attackers exploiting the
vulnerability, and the impact of a successful exploitation.

Severity Rating Description

Not Exploitable This finding can most likely not be exploited.

Low The vulnerability is either hard to exploit (e.g., because a successful
exploitation requires significant prerequisites) or its consequences can be
considered benign.

Medium The vulnerability can be exploited (possibly under certain preconditions) and a
successful exploit can be used to at least partially bypass the security
guarantees of the solution.

High The vulnerability can be exploited easily and a successful exploit bypasses one
of the core security properties of the solution.

Critical The vulnerability can be exploited easily and a successful exploit can be used
to compromise systems beyond the scope of the analysis.

Secfault Security Confidential Page 30 of 31

Chapter 8

8 Glossary

Term Definition

API Application Programming Interface

CLI Command Line Interface

ID Identification

IO Input/Output

IPC Inter-Process Communication

NTFS New Technology File System

PoC Proof-of-Concept

SSH Secure Shell

Secfault Security Confidential Page 31 of 31

	1 Executive Summary
	2 Overview
	2.1.1 Target Scope
	2.1.2 Test Procedures
	2.2 Project Execution

	3 Result Overview
	4 Results
	4.1 Retest
	4.1.1 Lax Parsing for Dotenv Files
	4.1.2 Output of Escape Sequences
	4.1.3 Race Condition in File Creation
	4.1.4 Access to Parent Environment in op run
	4.1.5 Missing Privilege Dropping in op run
	4.1.6 Secret Data in Command Arguments
	4.1.7 ToCToU Weakness in Windows Peer Verification

	4.2 New Findings
	4.2.1 Windows Peer Verification depends on File System Type

	5 Additional Observations
	5.1 Use of Deprecated Endpoints in CLI Item Share Command

	6 Customer Feedback
	6.1 Lax Parsing for Dotenv Files (Finding 4.1.1)
	6.2 Race Condition in File Creation (Finding 4.1.3)
	6.3 Access to Parent Environment in op run (Finding 4.1.4)
	6.4 Windows Peer Verification depends on File System Type (Finding 4.2.1)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Severity

	8 Glossary

